
Advanced 3D-Data Structures

Martin Haidacher

April 4, 2011

1 Introduction

The basic element in computer graphics is the data which has to be rep-
resented. The data can originate from very different sources. It can, e.g.,
originate from a digitizer, a modeling software package or a simulation. The
origin of the data is one reason to choose a certain internal data represen-
tation. In this case the data representation should be able to represent the
original data best.

Besides the data origin the choice of an internal data representation also
depends on features of the application in which the data is rendered. For
example it makes a difference if it is important to render data in real-time
versus the accurate representation of details.

In this document different data representations are described. All of
them have their advantages and disadvantages. Which of them is chosen for
a certain data origin and application is dependent on the requirements. In
the next section different requirements are listed which influence the choice
of a data representation. In Section 3 the most common data representations
for spatial data are described in detail.

2 Data Representation Requirements

The following list specifies the main requirements on spatial data represen-
tations:

Representation of general objects The data representation is able to
represent objects with arbitrary shape. This requirement is important
for a modeler who has to generate models of various shapes.

Exact representation of objects It is possible to describe an object ex-
actly with the data representation. For some applications it is not good

1



enough if an object is represented by approximations. Especially for
curved surfaces it makes a difference if the data representation is able
to describe the shape exactly or by approximation.

Combinations of objects For some applications it is necessary to com-
bine different objects into a single one. This can be done by logical
operations such as AND, OR and XOR.

Linear transformation Linear transformations (e.g., rotation, scaling, trans-
lation) are used to change the shape and position of an object in a scene.
In some data representations these transformations can be applied very
fast in others it is rather complicated to apply them.

Interaction The interaction requirement is of particular interest for a mod-
eler who wants to modify an object. Therefore, it should be possible
to easily interact with an object or parts of it.

Fast spatial searches For some applications it is important to do spatial
searches to find, e.g., the nearest neighbor to a current point. This is
for example necessary for collision detection in computer games.

Memory consumption If objects are very large or if they have to fit in
a certain memory space, such as the GPU memory, the memory con-
sumption is important in the selection of a suitable data representation.
Especially if it is important to represent complex objects accurately the
memory consumption might be excessive with the wrong data repre-
sentation.

Fast rendering For real-time applications it is important that the rendering
process is fast. Some data representations are designed to fulfill this
requirement because they are adapted to the rendering pipeline of the
graphics hardware.

3 Internal Data Representations

The representation of spatial data is an important issue in game program-
ming, computer graphics, visualization, solid modeling, and related areas
including computer vision and geographic information systems (GIS) [3].
Depending on the field and the characteristics of the data different types
of representations are useful. In the remainder of this section some of the
most common data representations are described. The capability of trans-
formations, combinations and fast rendering of objects are explained in more

2



detail for each data representation. Furthermore a list of advantages and
disadvantages is given.

3.1 Point Cloud

In a point cloud representation data is represented as a cloud of spatial
points. This is the simplest representation of spatial data. Each point is an
individual object. There exists no information about the relation of different
points. In particular, connectivity information is not stored. 3D scanning is
an example which generates such a point cloud. In this case a laser range
scanner is sampling the surface of an object. For each sample point the
distance between the scanner and the surface point is retrieved. By knowing
the position of the scanner in respect to the object as well as the accurate
direction of the laser, a three dimensional point can be calculated based on
this distance. The scans from different view points are finally registered and
combined to a single point cloud which represents the whole object. Figure 1
shows an example of such a point cloud.

Figure 1: A point cloud generated by a 3D scanner (Source [4]).

Data Structure

• Object = List of points

3



• Point = Spatial coordinate (x,y,z)

Transformations

To transform a whole object it is only necessary to transform each individual
point of the cloud.

Combinations

In a point cloud representation no information about the inside or outside
of an object exists. Therefore it is, e.g., not possible to subtract one object
from another. The only combination which is possible is the combination of
the points of both objects to a single object.

Memory Consumption

The accurate representation of curved or complex surfaces needs many points
and therefore a high memory consumption.

Rendering

The rendering process for points is very simple. Each point is simple pro-
jected onto the corresponding pixel on the screen. To represent closed sur-
faces it is necessary to have enough points (≥ 1 point per pixel). The z-buffer
can be used to get the correct occlusion of the points. Due to the increasing
power of graphics hardware the complexity of models has rapidly increased
in recent years. Single polygons might be much smaller than the area of a
pixel on the screen in the common representation. In such a case it is more
efficient to represent the model with a point cloud in respect to memory con-
sumption and rendering speed. Therefore it is possible that point clouds are
used more often to represent models.

Advantages

+ Fast and easy rendering

+ Exact representation with correct occlusion possible

+ Fast and easy transformations

4



Disadvantages

- Many points for complex surfaces

- High memory consumption (especially if the surface is complex)

- Many points are needed to represent a closed surface

3.2 Wire-Frame Model

With the wire-frame model each object is represented by a couple of straight
edges. A cube, e.g., is represented by its twelve edges. There is no informa-
tion about the space between edges. Therefore the wire-frame model cannot
be used to describe surfaces. It is often used for the construction of buildings
or other objects because there it is especially important to see the edges of
the model.

Data Structure

• Object = List of pointers to edges of the model

• Edge List = List of all edges of the model

• Edge = A pointer to two vertices (start and endpoint of an edge)

• Vertex List = List of all vertices of the model

• Vertex = Spatial coordinate (x,y,z)

Figure 2: Data structure for the representation of a wire-frame model.

Transformations

Transformations are easy to execute. Only the vertices in the vertex list have
to be transformed to transform an object.

5



Combinations

Similar to the point cloud the wire-frame model does not contain any in-
formation about the inside or outside of an object. The only possibility to
combine two objects is to combine all vertices and edges of both objects into
a single vertex and edge list.

Memory Consumption

The advantage of the wire-frame model is that one vertex can be used as
starting point for many edges. This can be used to reduce the memory
space. For curved surfaces, such as a sphere, many vertices and edges are
necessary to approximate it accurately.

Rendering

This model was invented for output devices which are only able to draw
lines (e.g., vector displays or plotters). For these devices this internal rep-
resentation is good enough since they are not able to render objects more
realistically.

For the rendering it is enough to project all points of the vertex list on
the image plane and draw the edges inbetween. In this manner the whole
model can be represented. With the built-in functions for the projection and
line drawing in graphics hardware this is a very fast process. Therefore the
wire-frame representation is sometimes used to give a fast overview over a
model without rendering it in detail.

One problem with the wire-frame model is the large number of lines which
are rendered on the screen. Since it is not possible to eliminate hidden edges,
it is hard to recognize which edges are closer and which ones are further
away from the viewer. A hidden-line method cannot be applied because the
geometric information which would be necessary for such a method does not
exist in the wire-frame model.

Advantages

+ Fast rendering

+ Transformations are simple to implement and fast to process

Disadvantages

- High storage consumption for complex objects with curved surfaces

6



- Loss of information (even hidden edges cannot be eliminated)

- All curved surfaces must be represented by straight edges

3.3 Boundary Representation

With the boundary representation (B-Rep) all objects are represented by
their boundaries. Compared to the wire-frame model the B-Rep also contains
additional information about the faces. This makes it possible to represent
an object as a closed unit.

With the B-Rep it is also common to store additional information for
each face. Such information is for example the normal vector of a face.
This additional information helps to speed-up the rendering process because
certain calculations can be avoided in the rendering process.

Curved surfaces of an object can not exactly be represented by a B-Rep.
Similar to the wire-frame model curved surfaces have to be approximated by
small polygons.

Data Structure

• Object = List of pointers to faces of the model

• Face List = List of faces

• Face = List of pointers to edges of the model

• Edge and Vertex List = Similar to wire-frame model

Usually only planar polygons are accepted as faces. With this restriction
the rendering can be done more efficiently. In Figure 3 an example of a B-
Rep is shown. In this structure the faces are the central starting point for
the list.

An alternative to this model is the winged-edge data-structure. This data
structure has also a face, edge and vertex list but in comparison to the B-Rep
model the central part of the data structure is the edge. Each edge stores
a pointer to two vertices (start point and end point) as well as a pointer to
the two faces on each side of the edge. Furthermore a pointer is stored to
the successor and predecessor edges of the faces. In Figure 4 an example for
a winged edge data structure is given.

The advantage of the winged-edge data-structure is the possibility to find
neighboring polygons fast. Since each edge holds all the information about
the faces on both sides of the edge, it is possible to find all neighboring faces
of one face by stepping through the edge list of this face. In the B-Rep shown

7



Figure 3: B-Rep: Most common data structure for boundary representation.

in Figure 3 a neighboring face can only be found by querying all other faces
in the list. A disadvantage of the winged-edge data-structure is that it has
problems with discontinuities in the model and it has to store more pointers
in comparison to the most common model in Figure 3.

Transformations

Similar to the wire-frame model it is enough to transform all the vertices
in the vertex list to transform an object. If additional information, such as
normal vectors, is stored in the face list then the transformation also has to
be applied to these vectors. Alternatively the vectors can be re-calculated
after the transformation.

Combinations

With the B-Rep it is easily possible to do simple operations like clipping with
a plane. For more advanced operations like union, intersection or difference
an additional semantic has to be defined for an object: Each object is con-
sidered to be closed and has no holes in it. For simplicity, the planes in the
face lists are defined in a way that all the normal vectors point away from

8



Figure 4: The winged edge data structure (Source [5]). The basis of the
structure is the edge.

the object.
If these semantics are fulfilled then a combination in a B-Rep between

object A and B can be done with the following algorithm:

1. Cut all polygons of object A with all polygons of object B (if necessary)

2. Cut all polygons of object B with all polygons of object A (if necessary)

3. Classify all polygons of object A as inside object B, outside object B or
on the surface of object B

4. Classify all polygons of object B in the same manner with object A

9



5. Depending on the operation remove the redundant polygons of A and
B and merge both B-Reps together

ad 1 and 2: To speed-up the cutting process a bounding box can be
defined for each polygon. This additional information allows faster testing
if a polygon of one object intersects a polygon of the other object at all.
Only when bounding boxes of both polygons intersect, a more complicated
intersection test between the two polygons is necessary. To further improve
the cutting algorithm all the polygons should be convex. This reduces the
number of queries which have to be made during the cutting process.

ad 2 and 3: The test whether a polygon is inside or outside of an object
is done by shooting a ray along the normal vector of the polygon. The ray
is tested for an intersection with all the polygons of the object. Only the
nearest polygon intersected by the ray is then considered for the inside or
outside test. If the normal vector of this polygon points in the same direction
as the ray then the polygon is inside of the object. Otherwise it is considered
to be outside of the object. Figure 5 shows how this test looks like for two
polygons.

Figure 5: Inside-outside test for two polygons A and B.

Improvement: Points of object A which are on the surface of object B (and
vice versa) are classified as border points during the cutting algorithm. Two
neighboring polygons always have the same classification (inside or outside)
except they are separated by a border point. Therefore it is possible to
inherit the classification of one polygon from another one until a border
point is reached. In Figure 6 this is illustrated in a simple example.

ad 5: As mentioned before, after the polygons are cut at the intersections
between the objects, some polygons are removed depending on the operation.
Table 1 gives an overview which polygons of object A have to be removed
for the union, intersection and difference operation.

Table 2 shows the removal information for polygons of object B.
In both tables the first two columns are rather straightforward. They

describe to remove or not to remove polygons inside of an object or outside

10



Figure 6: Classifications which are already done can be inherited in the
neighborhood until a border point is reached.

on B (coplanar)
inside B outside B NA = NB NA 6= NB

A or B yes no no yes
A and B no yes no yes

A minus B yes no yes no

Table 1: Removal of polygons of object A.

of an object. For polygons which are coplanar with polygons in the other
object, the normal vector has to be considered for the decision.

As a result of this algorithm further requirements are necessary for the
boundary representation:

• Only convex polygons : Simplifies the algorithm for the cutting of poly-
gons

• No double vertices : Otherwise the classification cannot be inherited as
explained before

• No open objects : Otherwise the inside/outside test cannot be performed

• Additional pointers in the data structure:

In the vertex list, which contains all vertices from the original polygons
as well as the vertices from the polygons after cutting them, a pointer
is added. This pointer links to other vertices which inherited the classi-
fication (inside or outside) from it. If all vertices of a face are classified

11



on A (coplanar)
inside A outside A NA = NB NA 6= NB

A or B yes no yes yes
A and B no yes yes yes

A minus B no yes yes yes

Table 2: Removal of polygons of object B.

as either inside or outside then the entire face can be classified as inside
or outside. Figure 7 shows how the additional pointers are added to
the vertex list.

Figure 7: The inheritance of the inside/outside-classification is additionally
stored in the vertex list.

Memory Consumption

In addition to the vertex and edge information the B-Rep additionally stores
a face list. The face list is in comparison to the edge and vertex list smaller
since a face consists of many edges and vertices. Therefore the additional
memory consumption is rather small.

The memory consumption can be high if curved surfaces are to be rep-
resented with high accuracy. In this case many small polygons are used to
approximate highly curved regions. The technique for the thus necessary
subdivision depends on the characteristics of the surface:

• Parametrizable surfaces (free form surfaces, quadrics, superquadrics):
The parameter space is subdivided into small pieces. Each of the cor-
responding surface pieces is approximated by a planar polygon. The

12



smaller the subdivision the closer the approximation is to the original
function.

• Non-parametrizable surfaces (non-planar polygons): The non-planar
polygons are subdivided into smaller polygons (mostly triangles). This
subdivision is called tesselation. In Figure 8 an example for tesselation
is given. The tesselation is a recursive process. It is repeated until the
approximation is good enough. As a parameter for the termination of
the tesselation the difference in the directions of the normal vectors
is used. If the directions of both normal vectors differs by less than
a threshold then the tesselation is stopped. The following equation
formalizes this:

N1 ·N2 ≥ 1− ε (1)

Figure 8: Curved objects are represented by an approximation through flat
surfaces.

Rendering

For the rendering it is necessary to use an algorithm which can handle hidden
lines and hidden surfaces.

Advantages

+ Transformations are easy to implement

+ General representation of many objects

+ Model generation based on digitized objects is possible

Disadvantages

- High memory consumption (especially for the accurate approximation
of curved surfaces)

13



- Combinations are costly

- Curved surfaces have to be approximated

3.4 Binary Space Partitioning Tree

The binary space partitioning tree (BSP tree) is a special type of a boundary
representation. BSP trees are especially practical for static scenes (no ani-
mated objects where each frame changes the internal representation). In a
BSP tree the polygons of an object are used to partition the space into smaller
subspaces. This partition simplifies the rendering process by an easier and
faster sorting of the polygons. Depending on the view point the polygons
can be drawn from back to front. By doing it in this order, polygons which
are farther away from the viewer are occluded by polygons which are closer
to the viewer. This kind of representation is mostly used for static scenes of
the environment in graphics applications. Examples for such applications are
computer games or flight simulators. The advantage is that all polygons can
be drawn with the correct occlusion very fast without the need of any hid-
den surface algorithm. Another common example is scenes with transparent
objects.

Data Structure

• Object = Pointer to the root node

• Node = Polygon, pointers to two child nodes

Each node of the BSP tree represents a planar polygon. The plane in
which this polygon lies (separation plane) subdivides the space in two half-
spaces. The half-space in the direction of the normal vector is the space in
front of the polygon. All polygons which are in this part are added as child
nodes on the left subtree of the parent node. Polygons in the half-space
behind the polygon are added as child nodes on the right subtree of the
parent node. In Figure 9 the basic structure of a BSP tree is shown.

If a polygon intersects a separation plane then the polygon must be cut
into two polygons. Each polygon further down in the BSP tree subdivides
only the remaining space represented by the parent node. In Figure 10 an
example for a simple BSP tree is shown. In this case polygon 1 subdivides
the whole space into two subspaces. All other polygons are behind polygon
1. Therefore they are all added on the right side of the node for polygon
1. Polygon 2 subdivides the space again but only the remaining polygons in

14



Figure 9: Structure of a BSP tree.

the subtree are considered for the test if they are behind or in front of the
separation plane. This procedure is then repeated for polygons 3 and 4.

Figure 11 and 12 show two more examples for the generation of a BSP
tree. For the example in Figure 11 two different possibilities are shown how
the BSP tree can be generated. With the approach on the right side it is
necessary to cut polygon 1 into two pieces (1a and 1b).

Due to the structure of a BSP tree it is easy to answer the question if
a point is inside or outside of an object. The position of a point in the
tree structure is determined by traversing the tree starting from the root.
At each node the tree is further traversed along the right subtree if the
point is located behind the considered polygon represented by the considered
node. Otherwise the tree is traversed along the left subtree. Only if the last
step from the root to the leaf is to the right, the point is inside the object
(inbetween there can be left steps).

For the construction of a BSP tree the following algorithm can be used:

• If the object is convex (as in Figure 10) then the generation is trivial
(linear list).

• Else the face list of the B-Rep is converted into a BSP tree with the
following algorithm:

1. Search for the polygon which intersects the fewest other polygons
with its separation plane (in practice a few polygons are selected
randomly and from these the one which intersects the fewest poly-
gons).

15



Figure 10: Generation of a BSP tree.

2. Subdivide the face list into two parts: in polygons which are in
front of the separation plane and polygons which are behind the
separation plane.

3. The selected polygon of step 1 becomes the root node. With
the polygons in the two face lists the left and right subtrees are
generated. The left subtree contains only polygons which are in
front of the separation plane and the right subtree only contains
polygons which are behind the separation plane.

Transformation

For the transformation of an object all vertices in the vertex list and the plane
equations as well as the normal vectors of the faces have to be transformed.

Combinations

In one possibility the combination of objects can be done on the B-Reps as
explained in the previous section. After that the BSP tree of the combined
object is generated. A second possibility is to combine two objects directly
with their BSP tree representations. This is the faster option.

16



Figure 11: Example for a BSP tree. The tree can be generated in two different
ways.

Figure 12: Another example for a BSP tree.

If the combination is directly done in the BSP tree the following problem
has to be solved: Object A should be combined by the operation op with
object B. The operation can be formalized in this way:

C = A op B (2)

Object C is the resulting object of the operation op. It should then also
be represented in a new BSP tree. The algorithm for the execution of this
combination is the following:

• Polygon PA of the root node of object A is intersected with object B.
This results in two new polygons:

P in
A = Part of PA inside object B

P out
A = Part of PA outside object B

(3)

• The separation plane of PA is used to separate object B into two parts:

B− = Part of B behind the separation plane of polygon PA

B+ = Part of B in front of the separation plane of polygon PA

(4)

17



The root node of the new object C gets the separation plane of PA as
separation plane and depending on the operation P in

A or P out
A as polygon (for

union and difference operations P out
A , for the intersection operation P in

A ). The
subtrees of C are generated recursivly from the subtrees Al and Ar of object
A as well as the separated trees B− and B+ of object B:

Cl = Al op B−

Cr = Ar op B+ (5)

The recursion stops if one of the two operands (A or B) represents a
homogeneous subtree. This means it is a leaf node and either full or empty.
In this case the result of the operation is determined according to Table 3.

op A B A op B
or inhomogeneous full full

inhomogeneous empty A
full inhomogeneous full

empty inhomogeneous B
and inhomogeneous full A

inhomogeneous empty empty
full inhomogeneous B

empty inhomogeneous empty
minus inhomogeneous full empty

inhomogeneous empty A
full inhomogeneous ¬B

empty inhomogeneous empty

Table 3: Trivial combination rules

Memory Consumption

The memory consumption is comparable to the B-Rep since the same lists
have to be stored.

Rendering

BSP trees are used for the fast rendering of scenes with correct occlusion.
For this purpose an algorithm is used which is called Painter’s algorithm and
it works the following way:

18



To render the polygons from back to front (seen from a specific view
point) the tree has to be traversed in the correct order. First all polygons
are drawn which are not in the half-space where the view point is (recursion
on either the left or right subtree). Then the polygon of the root node is
drawn. Finally all the polygons in the half-space of the view point are drawn
(recursion on either the right or left subtree). With this technique all the
nodes in the tree are traversed only once and the occlusion is correct for all
polygons.

If the view point is in front of the separation plane of polygon PA:

1. Render of A−

2. Render PA

3. Render of A+

Else (if the view point is behind the separation plane of polygon PA):

1. Render of A+

2. Render PA

3. Render of A−

Polygons which are farther away from the view point are overdrawn by
polygons which are closer to the view point.

Advantages

+ Transformations are trivial

+ Fast rendering with correct occlusion

+ Can be used to represent general objects

+ Model generation based on digitized objects is possible

Disadvantages

- Curved surfaces must be approximated

- Only convex polygons can be used

- High memory consumption (especially for curved and complex objects)

19



3.4.1 kD Tree

A kD tree is a special case of a BSP tree. In a kD tree the subdivision
of the space is always axis-aligned. Each node only represents a separation
plane. In contrast to that a root node in the BSP tree also represents a
polygon which defines the separation plane. In the kD tree all the polygons
are represented as leaf nodes. If a polygon is intersected by a separation
plane then the polygon is cut into two pieces. In Figure 13 an example for a
2D kD tree is given.

Figure 13: 2D example of a kD tree. In each tree level the subspace is
separated by a axis-aligned plane into two subspaces.

The advantage of a kD tree in comparison to a BSP tree is the faster
generation since the separation planes are axis-aligned and the intersection
test with polygons is therefore faster. The disadvantage is that some of the
positive properties, such as the simple inside test in the BSP tree, get lost.

3.5 Octree

Octrees are a volume model. They represent a volume directly in the data
structure. The main advantage of this structure is the fast and easy combi-
nation of several objects. It is not necessary to do this during the rendering
process. Therefore the rendering process becomes faster and easier.

Octrees are based on the principle of space subdivision. Each octree node
represents a region in space. If necessary this region is subdivided into 8
subspaces. The subdivision is done through the center of the space along the
three main axes.

Each leaf node of the tree represents one block. This block can be either
empty (also called white W) or full (also called black B). If the representation
by a block in one subspace is not accurate enough, it is further subdivided

20



(also called gray G). Figure 14 shows an example of a simple octree. On the
left side the object which is represented by this octree is shown.

Figure 14: Example of a simple octree.

Data Structure

• Object = Pointer to the root node

• Node = Either full, empty or a pointer to 8 subnodes

Transformation

Transformations in general are hard to implement. The whole tree has to be
constructed again after a transformation. Only specific transformations like
a rotation by 90 degrees is smple.

Combinations

Combinatons are easy to process with an octree. The implementation only
needs to process Boolean operations. Therefore the processing time of the
combination is very fast.

Memory Consumption

Objects with curved surfaces and small details need many subdivisions to be
represented accurately by an octree. This requires more memory.

Rendering

For the rendering of the octree an algorithm exists which processes the tree
based on the current view direction. It starts to render the subspace which

21



is farthest away from the viewer. The algorithm ends with rendering of the
subspace which is closest to the viewer. This guarantees that the occlusion
is correct for all subspaces. In particular the rendering for one node of the
tree looks like the following:

• If the node is empty (W), do nothing

• If the node is full (B), draw a cube

• If the node is further subdivided, order the leaf nodes according to the
viewing direction and render them in the correct order (recursively)

A problem with the rendering of an octree is the blocky result since only
cubes are rendered. This effect can be reduced by further subdividing the
octree.

Advantages

+ Combinations can be processed fast and are very easy to implement

+ Rendering is simple

+ Spatial searches are fast

+ Model generation through digitization of real objects is easily possible

Disadvantages

- High storage demands for an accurate approximation of complex and
curved objects

- Transformations are hard to implement

- General objects can not be represented exactly

3.5.1 Extended Octree

A possible extension of octrees is the introduction of new leaf nodes:

• Face nodes

• Edge nodes

• Vertex nodes

22



This extension allows to represent objects with more details without sub-
dividing the octree too often. This saves memory. The generation of the
extended octree from a list of polygons works as follows:

• Generate a list of faces and a list of edges (similar to the B-Rep in
Section 3.3)

• Separate these lists in 8 different lists for each octant by clipping with
the borders between the octants

• For each octant:

– If both lists are empty: the node is either full or empty

– If the vertex list contains only one vertex: generate a vertex node

– If the face list contains only two faces: generate an edge node

– If the face list contains only one face: generate a face node

– Else: Further subdivide the octant (recursively)

Figure 15 shows the three additional nodes for the extended octree.

Figure 15: Additional nodes for the extended octree.

Data Structure

• Object = Pointer to the root node

• Node = Either full, empty, edge node, vertex node, face node or pointer
to 8 subnodes

23



Transformation

To transform an extended octree it is best to convert the octree into a B-Rep
and then transform it. After that a new octree can be generated based on
the transformed B-Rep.

Combinations

The combination of two extended octrees is done in the following manner:

• Is the node of octree A or B either full or empty then the Boolean
operations can be applied

• Is the node of octree A and B further subdivided then all subnodes are
combined (recursively)

• Is the node of octree A either an edge, vertex or face node and the node
of octree B is further subdivided then the subnodes of B are combined
with the node of A (recursively)

• Are both the nodes of octree A and B either an edge, vertex or face
node then the resulting combinations are calculated geometrically

Memory Consumption

The memory consumption for the accurate representation of complex objects
is lower in comparison to the usual octree.

Rendering

For the rendering the extended octree is converted back to a B-Rep. The
vertex nodes are used to reproduce the vertex list. The face and edge nodes
are used to reproduce the face list.

Advantages

+ Memory consumption is lower (in comparison to the usual octree)

+ Can represent general objects better

Disadvantages

- Has to be converted into a B-Rep for rendering

- Combinations of two extended octrees are more complicated (in com-
parison to the usual octree)

24



3.5.2 Octrees as Spatial Directories

Octrees are often used as a search structure for different objects combined
in a scene. This is for example important for computer games when collision
detection is needed. In a tree structure the nearest neighbor to the current
object can be found very fast.

For the underlying data structure of the object various representations
can be used. The depth of the octree depends on the desired number of
objects in a subspace. If an object is part of more subnodes then a pointer
in each of these nodes is referring to the object. Figure 16 shows an example
of such an octree. The nodes of the octree in this case refer to objects of a
B-Rep.

Figure 16: B-Rep represented in an octree.

3.6 Constructive Solid Geometry Tree

A Constructive Solid Geometry Tree (CSG Tree) is a binary tree. The in-
termediate nodes in the tree represent logical combinations. The leaf nodes
represent primitives and their transformations. Figure 17 shows an example
of a CSG tree. As primitives only a few elementary objects, such as sphere,
block, cylinder or sweeps, are necessary to represent complex objects by the
usage of transformations and combinations.

Data Structure

• Object = Pointer to an object

• Node = either

25



Figure 17: Example of a CSG tree.

– Intermediate node: Combination of two objects

– Leaf node: Primitive and transformation

Transformation

An object is transformed by adding the transformation to the transformation
at each leaf node.

Combinations

Two objects represented by two CSG trees can easily be combined by attach-
ing both trees as subtrees to a new root node with the desired combination
operation.

Memory Consumption

For a CSG tree only the structure of the tree with its combinations and the
transformations of the primitives have to be stored. The transformations are
stored as transformation matrices. The CSG tree is an efficient way to store
the exact representation of complex objects.

Rendering

The rendering of a CSG tree is directly not possible. One possibility to render
a CSG tree is by converting it into a B-Rep. Through this step the exact

26



representation gets lost as well as the memory consumption increases. But
it can be rendered fast after this conversion.

Another possibility is to use a raytracing algorithm for the rendering. The
raytracing directly uses the CSG tree structure. Therefore it is not necessary
to convert the CSG tree into any other representation. The disadvantage of
the raytracing is the slower rendering speed in comparison to a fast rendering
based on B-Reps.

Advantages

+ Low memory consumption

+ Can represent objects exactly

+ Combinations and transformations are simple

+ Fast spatial searches due to the tree structure

Disadvantages

- Rendering techniques are complicated and slow

- It is not easily possible to generate a CSG tree based on digitized data
(e.g., from a 3D scanner)

3.7 Bintree

The bintree is used as structure for spatial searches. The name bintree orig-
inates from binary tree. The root node of the tree subdivides the space into
two subspaces. The two child nodes of the root node subdivide the two half
spaces again. Figure 18 shows an example for the construction of a bintree.
All the subdivision planes are perpendicular to one axis (x, y, or z). The
axes are alternated for each tree level (e.g., xyzxyz...).

In comparison to the octree, which also can be used as spatial directory
(see Section 3.5.2), the subdivision does not necessarily separate the space
into two equally large subspaces. This property helps to balance the tree
better in the case the objects, which should be represented by the bintree,
are not distributed equally in space. A better balanced tree also needs less
nodes and therefore a lower memory consumption.

27



Figure 18: Construction of a bintree.

Data Structure

• Object = Pointer to a node

• Node = either

– Intermediate node: Subdivision position

– Leaf node: Geometry (e.g., vertex in a B-Rep)

The subdivision position is a value between 0 and 1. If it is 0.5 then it
separates the space exactly into two equally large subspaces.

3.8 Grid

A regular subdivision of the space in the form of a 3D grid can also be used
as a structure for spatial searches. In contrast to trees this structure has
the advantage that there is only one level. In this level all the cells of the
grid can be addressed directly. Therefore a grid is especially good in finding
neighboring cells. Since there is only one level in the structure the processing
time for this search is constant.

The grid structure is very flexible in storing different kind of data at each
grid point. It is possible to use the grid for spatial indexing of some geometry.
This is similar to Section 3.5.2 where octrees are used as spatial directories.
Furthermore each grid point can store one or more values of some volumetric
phenomena at the corresponding position. In this case the grid structure
is also referred to as volumetric data set. An example for such a data set
is Computed Tomography (CT) where each point in the grid describes the
physical density at a certain position in space. Another example is a flow

28



simulation. In this case it is possible to store a vector at each grid point
which represents the flow direction and strength at this position.

No matter for which purpose the grid is used, a problem with the grid
structure is the critical choice of an appropriate cell size. If the size of the cells
is too large the grid is not able to represent an object accurate enough. If the
size of the cells is too small the whole grid needs high memory consumption.

One solution to prevent this problem is a hierarchical grid. In this case
the base structure of the grid consists of larger cells. For subspaces where a
higher resolution is necessary smaller cells are used to represent these areas.
In Figure 19 a 2D example for a hierarchical grid is given.

Figure 19: Hierarchical grid.

Data Structure

• Object = Array of grid points

• Grid Point = Value(s) or reference to a geometry

Through the dimension of the grid (x, y, and z) and the array index of a
grid point, it is possible to restore the 3D position of a grid point. Therefore
it is not necessary to store the spatial position of each grid point. This
reduces the memory consumption and makes it easier to traverse the data.
In a hierarchical grid the resolution for each block must be stored to restore
the correct position of each grid point.

29



Transformation

Transformations of a grid are difficult in general. Only simple transformatons
like rotations by 90 degrees are easy to compute. For all other transforma-
tions the whole grid has to be re-computed.

Combinations

The grid structure does not contain any geometrical information of the ob-
ject. Hence it is not possible to apply logical operations based on the shape
and position of objects. But it is possible to apply operations like MAX,
MIN or DIFF on a cell level. To process these operations both grids have
to have the same grid resolution. If this is not the case one grid has to be
converted to fit the resolution of the other grid.

Memory Consumption

For the grid structure the memory consumption is only dependent on the
resolution of the grid. The smaller the cells, the larger the grid and the
higher the memory consumption.

Rendering

The grid structure is especially suitable for algorithms which have to fre-
quently sample the neighboring cells during the rendering process. In the
grid structure this sample process can always be computed in a constant
time, no matter at which location inside the grid. An example for such an
algorithm is raycasting.

Advantages

+ Constant processing time of all cells

+ Memory consumption is directly dependent on the resolution

+ Can be used to represent an object coming from a digitizer

Disadvantages

- Contains no geometrical information of the object

- Memory consumption can be high for an accurate representation of an
object

30



- Transformations are not trivial to apply

References

[1] Java Applet for BSP Tree Construction. http://symbolcraft.com/

graphics/bsp/index.php, January 2011.

[2] Java Applet for kD Tree Construction. http://homes.ieu.edu.tr/

~hakcan/projects/kdtree/kdTree.html, January 2011.

[3] Hanan Samet. Spatital data structures. In ACM SIGGRAPH 2007
courses, SIGGRAPH ’07, 2007.

[4] Engineering Specifier. http://www.engineeringspecifier.com/

Design-Software/CCEs-EnSuite-Delivers-Support-for-Point-Cloud-Files.

asp, January 2011.

[5] Engineering Specifier. http://cse.csusb.edu/tongyu/courses/

cs520/notes/mesh.php, January 2011.

31

http://symbolcraft.com/graphics/bsp/index.php
http://symbolcraft.com/graphics/bsp/index.php
http://homes.ieu.edu.tr/~hakcan/projects/kdtree/kdTree.html
http://homes.ieu.edu.tr/~hakcan/projects/kdtree/kdTree.html
http://www.engineeringspecifier.com/Design-Software/CCEs-EnSuite-Delivers-Support-for-Point-Cloud-Files.asp
http://www.engineeringspecifier.com/Design-Software/CCEs-EnSuite-Delivers-Support-for-Point-Cloud-Files.asp
http://www.engineeringspecifier.com/Design-Software/CCEs-EnSuite-Delivers-Support-for-Point-Cloud-Files.asp
http://cse.csusb.edu/tongyu/courses/cs520/notes/mesh.php
http://cse.csusb.edu/tongyu/courses/cs520/notes/mesh.php

	Introduction
	Data Representation Requirements
	Internal Data Representations
	Point Cloud
	Wire-Frame Model
	Boundary Representation
	Binary Space Partitioning Tree
	kD Tree

	Octree
	Extended Octree
	Octrees as Spatial Directories

	Constructive Solid Geometry Tree
	Bintree
	Grid


