Advanced 3D-Data Structures
Eduard Groller, Martin Haidacher

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Motivation

= For different data sources and applications
different representations are necessary
m Examples:
+ 3D scanner: produces a set of spatial points
which are not connected to each other
+ Computer game: Scenes and characters are
usually represented as surface model
consisting of many polygons
m A data structure for a certain application should
be able to fulfill the necessary requirements

Groller, TheuBl, Haidacher 2 E
3D-Data Structures: Requirements 3D-Data Structures: Overview
= Representation of general objects = Point Cloud

Exact representation of objects
Combinations of objects
m Linear transformation

= Wire-frame Model
m Boundary Representation
m Binary Space Partitioning Tree

m Interaction m kD Tree
= Fast spatial searches = Octree
= Memory capacity = Constructive Solid Geometry Tree
m Fast rendering = Bintree
= Grid
Point Cloud Operations with Point Clouds

= Object = set (list) of points
¢ E.g. from a digitizer or 3D scanner
m For fast and simple preview
= Exact representation if >=1 points/pixel
+ More efficient than 1 pixel sized polygons

Groller, Theufl, Haidacher 5

= Transformations

+ Multiply the points in the point list with linear
transformation matrices

= Combinations

+ Objects can be combined by appending the
point lists to each other

= Rendering

+ Project and draw the points onto the image
plane

Groller, Theugl, Haidacher 6 ﬁ

Properties of Point Clouds

= Advantages
+ Fast rendering
+ Exact representation & rendering possible
¢ Fast transformations
» Disadvantages
+ Many points (curved obj., exact representation)
+ High memory consumption
4 Limited combination operations

Groller, Theufl, Haidacher 7 #

Surfels (SURFace ELementS)
= http://lwww.merl.com/projects/surfels/

= movies: cab, wasp, salamander with holes,
salamander corrected (more movies on

web page)

QSplat (1/2)
= 3D scan of 2.7 meter statue
of St. Matthew at 0.25 mm
= 102.868.637 points
= File size: 644 MB
= Preprocessing time: 1 hour §

= Demo on laptop (Pl 366, 128
MB), no 3D graphics
hardware
http://graphics.stanford.edu/so
ftware/qsplat/

Groller, Theufl, Haidacher 9

QSplat (2/2)

Groller, TheuBl, Haidacher 10 ﬁ

3D-Data Structures: Overview

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

m kD Tree

Octree

m Constructive Solid Geometry Tree
= Bintree

= Grid

Groller, TheuBl, Haidacher 1 #.

Wire-Frame Model

= Object is simplified to 3D lines, each edge of
the object is represented by a line in the model

EdgelistA 5
B3 LTI

A 2 [c

©
o

Graoller, TheuBl, Haidacher 12 #—

Operations with Wire-Frame Model

= Transformations

¢ Multiply the points in the point list with linear
transformation matrices

= Combinations

+ Objects can be combined by appending the
point and edge lists to each other

m Rendering

+ Projection of all points onto image plane and
drawing of edges in between

Groller, Theufl, Haidacher 13 #

Properties of Wire-Frame Models

= Advantages
+ Quick rendering
+ Easy and quick transformations

= Disadvantages
4+ High memory consumption

Groller, Theufl, Haidacher 14

+ Generation of models via digitization

+ Inexact (no surfaces, no occlusion)
+ Restricted combination possibilities
+ Curves are approximated by straight lines

#

3D-Data Structures: Overview

Boundary Representation
Binary Space Partitioning Tree

Boundary Representation (B-Rep)

Vv
SE,TV,

kD Tree vertex list | edge list | face list
- o VX, Y, 2, ExV, V, | S, E,E,E,
| clree V2: X2 y2 22 EZ: V2 V3 Sz: Ez E4 E5 E6
» Constructive Solid Geometry Tree ViiXs Y3 23| Egi V3 V)
= Bintree ViiXy Ya 24 Ei V3V,
» Grid Vs X5 Vs Zg E5:_V4 Vs
Groller, TheuBl, Haidacher 15 #’ Groller, TheuBl, Haidacher E6. 5 162 &'
Lists for B-Reps (1/4) Lists for B-Reps (2/4)
Face list Face list
E 7’{'30 S1 3 S2 E ?Ijo Sl 5 SZ
ofe] [efo] [efe] [e[e] [eo] [e]e]
Groller, TheuBl, Haidacher 17 ﬁ- Groller, TheuBl, Haidacher 18 ﬁ'

Lists for B-Reps (3/4)
Face list S S
/

Lists for B-Reps (4/4)

Face list S S

@ é | ps| 1 o 2
® /

Edge

list

V, V, V, V, Vs P vV, V, V, V, Vg P
Winged Edge Data Structure Operations with B-Reps (1/2)

= Alternative for normal hierarchical B-Rep
m Here the central element is the edge:

N\ feew

= Transformations
+ All points are transformed as with wire-frame
model, additionally surface equations or normal
vectors can be transformed

[~ m Rendering
succ_cw pred_cw [~
Pen@ (Pstart = + Hidden surface or hidden line algorithms can
pred cow succ_cow g be used because the surfqggs of the objects
/S I are known, so that the visibility can be
face_ccw A calculated
faces
1st edge\ (Y]
Groller, TheuBl, Haidacher 21 pOIntS = # Groller, TheuBl, Haidacher 22 &
Operations with B-Reps (2/2) Combinations of B-Reps (1/4)

= Combinations

¢ 1. Split the polygons of object A at the
intersections with the polygons of object B

+ 2. Split the polygons of object B at ... of A

+ 3. Classify all polygons of A as "in B", "outside
B" or "on the surface of B*

+ 4. Classify all polygons of B in the same way

¢ 5. Remove the redundant polygons of A and B
according to the operator and combine the
remaining polygons of A and B

Groller, Theufl, Haidacher 23 &

= Every polygon has a box enclosure
= simple test if polygons can intersect

= Use only convex polygons and produce only
convex polygons as results
= simple intersection tests

1: 2:

A'_ye AY@—) Ai@

Groller, Theugl, Haidacher 24 ﬁ

Combinations of B-Reps (2/4)

= Aray is traced in the direction of the normal
vector of the polygon to be classified:
Ray hits no polygon of B = "outside B"
+ First polygon of B hit from front = "outside B"
+ First polygon of B hit from back = "in B"

"outside B"

Groller, Theufl, Haidacher 25 #

Combinations of B-Reps (3/4)

= Improvement: points of A, which lie on the
surface of B, are marked as border points
during the dividing process (and vice versa)
= only very few polygons have to be classified
with the complex method

border poin\

outside A

border point

Groller, Theufl, Haidacher 26 ﬂ

Combinations of B-Reps (4/4)

m Polygons can be removed according to tables:

in B |outside B| on B (coplanar)

For op. NV equal| different
polygons | AorB | yes no no yes
of A AandB | no yes no yes
Asub B yes no yes no

inA |outside A| on A (coplanar)

Requirements on B-Reps for this Alg.
= No open (non-closed) objects
= Only convex polygons
= No double points

= Additional links in the vertex list between
neighbor points with equal classification

For op. NV equal| different vertex list
polygons | AorB yes no yes yes
of B Aand B no yes yes yes
AsubB no yes yes yes
Partitioning of Object Surfaces Tesselation

= Necessary to approximate curved surfaces
m Surfaces that can be parameterized:

+ E.g. free form surfaces, quadrics,
superquadrics

+ partitioning of parameter space, one patch for
every 2D parameter interval

= Surfaces that cannot be parameterized:

+ E.g. implicit surfaces, "bent" polygons
= tesselation, subdivision surfaces

Groller, Theufl, Haidacher 29 &

= Divide polygons in smaller polygons (triangles)
until the approximation is exact enough

= Normal vector criterion as termination condition:

= Normal vectors of neighboring polygons are similar:

N
N, 2 Objekt

Approximation

Groller, TheuRl, Haidacher 30 ﬂ

Properties of B-Reps

= Advantages
+ General representation
+ Generation of models via digitization
+ Transformations are easy and fast

3D-Data Structures: Overview

|
|
| |
= Binary Space Partitioning Tree

» Disadvantages s kD Tree
+ High memory requirement = Octree
¢ Combinations are relatively costly = Constructive Solid Geometry Tree
+ Curved objects must be approximated = Bintree
' = Grid A
Groller, TheuRl, Haidacher 31 # Groller, TheuBl, Haidacher 32 ﬁ
Binary Space Partitioning Tree Binary Space Partitioning Tree

= Special B-Rep for quick rendering with visibility
+ Especially of static scenes
polygon nodes with

surface equation P
and normal vectorﬁ " polygon vertices
e

= The base plane of the polygon in a node
partitions space in two halves:

+ In front of and behind the polygon
= Left subtree of the node: contains only
polygons that are in front of the basis plane
= Right subtree of the node: contains only
polygons that are behind the basis plane
m Polygons that lie in both halves are divided by
the base plane into two parts

point list
Groller, TheuBl, Haidacher : m 33 m : #’ Groller, TheuBl, Haidacher 34 &'
Generation of BSP Trees BSP Example

= Convex objects: BSP tree is linear list
= Else: conversion B-Rep = BSP tree
m Algorithm:

+ 1. Find the polygon who's plane intersects the
fewest other polygons and cut these in two

+ 2. Divide the polygon list in two sets:
in front of that plane / behind that plane

¢ 3. The polygon found in 1. is the root of the
BSP tree, the left and the right subtrees can be
generated recursively (from two "halves")

Groller, Theufl, Haidacher 35 &

Polygon 1 BSP-Tree

Polygon 2
Polygon 3
Polygon 4

2D example:

Object

Groller, Theufl, Haidacher 36 ﬂ

More BSP Examples
2 S | "

BSP Trees as Solids
BSP tree

or
out
ou

ou

t put put’)EK
|
t in

n Left empty trees represent outside space
= Right empty trees represent inside volumes

Groller, TheuRl, Haidacher Groller, TheuBl, Haidacher 38 g
Operations with BSP Trees (1/2) Operations with BSP Trees (2/2)
= Rendering = Transformations

+ BSP trees are very good for fast rendering
+ Painter’s Algorithm:

IF eye is in front of a (in A+)
THEN BEGIN draw all polygons of A-;
draw a;

draw all pol
ELSE BEGIN draw a

ons of A+ END
polygons of A+;

4+ Points, plane equation and normal vector have
to be transformed

= Combinations

+ Perform combination with B-Rep, then
generate BSP tree

+ Combine BSP trees directly (faster)

gdraw a);

raw all polygons of A- END;

Groller, TheuBl, Haidacher 39 ﬁ' Groller, TheuBl, Haidacher 40 g‘

Combination of BSP Trees Combination of BSP Trees: U
A /a_" Bj Bin ELDJ Bout 1

The structure of one b 2] - -
tree has to act as ¢ \c = 7 s
structure for the result SN \d‘\\ e 4\ Fam\
= one tree has to be Aot A ; 4

included into the other

Groller, TheuRl, Haidacher 41 #

C . W) _:\
b A E 4 % Aoyt
1. i B. 3in -

n

N
a aOUtl a'in B B AOu_t ; BOUI Ain & Bin /
* 2 30t = Bout) P

Groller, TheuBl, Haidacher

BSP Algorithm for A op B = C:

= A or B homogeneous (full or empty)

Simple BSP Node Combination Rules

) op A B AopB
= simple rules or inhom. ful full
= Else: inhom. empty A
L . . full inhom. full
+ 1. Divide root polygon a of A at object B in a,, empty inhom. B
out and inhom. full A
+ 2. Root node ¢ of C: if op="and" then c:=a,, '”?lj)l:“' i‘f‘g‘é’g emety
else c:=a,,, (with its plane) empty inhom. empty
+ 3. Divide B at plane of ain By,, By, sub inhom. full empty
. . . inhom. empty A
+ 4. Recursive evaluation of the subtrees: full hom. B
Cleft:Aout op Bout CrightzAin op Bin : empty inhom. empty .
Groller, TheuRl, Haidacher 43 & Groller, TheuRl, Haidacher 44 ﬂ
Combination of BSP Trees: U Combination of BSP Trees: N

Bout[L, J

/a\ ° }‘ B'”/L”:J

S b '=/ N
SN L c = 4
7N © NN N 0
d 2N \ A A;ﬁ\ d’
7\ C N— ——
vd . : A
b A :43 b A :d43/C/ain\\
il i in 4 1. i B. in |
a a - a . - B 3 a il 2 . il B \ Aouth Bout Ain N Bin
Outlou in BOUt 3om Outlou in BOUI 3 t (- {}) /
Groller, TheuRl, Haidacher 2 a5 # Groller, TheuRl, Haidacher 2 04': T — &
Combination of BSP Trees: N Properties of BSP Trees
A a Bj C a, = Advantages
b % 4 d + Fast rendering
4 \c RN + Fast transformation
4 \d 4 \ + Combinations faster than for B-Reps
7N\ 7N\ + General representation
C . 7N + Generation of models via digitization
b A ; 4 (b, and c,, are empty) + Tree structure (fast search)
1in E Bin -
a aoutl a auil ?Ij)
Groller, TheuBl, Haidacher 2 47 i- Groller, TheuRl, Haidacher 48 ﬁ'

Properties of BSP Trees

= Disadvantages
¢ Curved objects must be approximated
+ Only convex polygons
+ High memory cost

Groller, Theufl, Haidacher 49 #

3D-Data Structures: Overview

|

m kD Tree

m Octree

m Constructive Solid Geometry Tree
= Bintree

= Grid

Groller, Theufl, Haidacher 50

kD Tree

= Special case of BSP Tree
= Only axes-aligned partitioning planes =>

kD Tree Example: 2-D Tree

specified by one value @ @@ @ CD® @ <3®
= Partitioning direction specified either implicitly (2) ®® (2> @ (2) @
(pre-defined order) or explicitly
-,
= 1D Tree & binary tree A C \z
[1]2]3T4]sTs] [1]2]3T4]5]s]
Groller, TheuBl, Haidacher 51 ﬁ Groller, TheuBl, Haidacher 52 ﬁ
3D-Data Structures: Overview Octree
- m Used to represent solid volumetric objects
- m Each node is subdivided in 8 subspaces
" m Each subspace is either empty, full or further
. divided
. = The subdivision stops when an object can be
represen r nough
+ Octree epresented accurate enoug
m Constructive Solid Geometry Tree
= Bintree
= Grid .
Groller, TheuRl, Haidacher 53 # Graoller, TheuBl, Haidacher 54 ﬁ

Octree Example

O
G(WWWWBG(WWWWWWWB)BB)

Groller, Theufl, Haidacher 55

2

Operations with Octrees

= Transformations
+ Hard to implement; easy: rotations of 90°
= Combinations

+ Can easily be done by logical operations; both
octrees must be adapted to each other to have
the same depth in each subspace

= Rendering
+ The octree is rendered depending on the view

direction starting with the subspace farthest
away from the viewer

Groller, Theufl, Haidacher 56 ﬂ

Properties of Octrees

= Advantages
¢ Combinations are easy to implement
+ Spatial search is fast due to the tree structure
+ Rendering algortihm is fast

= Disadvantages

+ High storage consumption for approximated
objects

+ Transformations are not trivial in general
+ General objects cannot be represented exactly

Groller, Theufl, Haidacher 57 #

Extended Octrees

= Additional node types:
¢ Face nodes: contain a surface
+ Edge nodes: contain an edge
+ Vertex nodes: contain a corner point

! Edge-Node

Vertex-Node J L ’
P N

Face-Node)
3

Groller, TheuBl, Haidacher 58

Generation of Extended Octrees

= 1. Generate B-Rep
m 2. Divide point and surface list at the
subdivision planes into 8 sets
= 3. For each octant:
+ Point and surface lists empty = full or empty
+ Only one vertex = vertex node
+ Only one surface = face node
+ Only two surfaces = edge node
+ Else: subdivide recursively

Groller, Theufl, Haidacher 59 &

Octree as Spatial Directory
= Octree as search structure for objects in other
representations

m E.g. for B-Reps:
search octree

object list
=~
face list

octree of low depth is sufficient

Groller, TheuRl, Haidacher 60

3D-Data Structures: Overview

Constructive Solid Geometry Tree

= A Constructive Solid Geometry (CSG) Tree
consists of simple primitives, transformations
and logical operations

m Useful to describe complex objects with a small
number of primitives

= Examples for primitives

. . 4 Cube
m Constructive Solid Geometry Tree
) + Sphere
] B|r_1tree + Cylinder
= Grid
Groller, TheuBl, Haidacher 61 & Groller, TheuBl, Haidacher 62 ﬁ
CSG Tree Example Operations with CSG Trees
Object C5G-Tree m Transformations
= + An object is transformed by adding the
transformation to the transformation of each
S [ox] Zylinder primitive
[_ - Ho = Combinations
Trans- Trans- + Two objects are simple combined by adding
formation | | formation them as children in a new tree
g = Rendering
+ Needs to be converted into a B-Rep or it is
L rendered with raytracing
Groller, TheuBl, Haidacher 63 # Groller, TheuBl, Haidacher 64 &
Properties of CSG Trees 3D-Data Structures: Overview
= Advantages]
+ Minimal storage consumption [
Combinations and transformations are simple =
+ Objects can be represented exactly -
+ Tree structure (fast search) -
= Disadvantages .
+ Cannot be rendered directly; slow rendering .
+ Model generation cannot be done through = Bintree
digitization of real objects)
= Grid

Groller, Theufl, Haidacher 65 #

Groller, TheuRl, Haidacher 66 ﬁ

Bintree

3D Tree

Subdivision order xyzxyz...
Choose separation plane for

optimized (irregular)
subdivision

Fewer nodes than octree

roller, TheuRl, Haidacher

BAN

N
2
=

.

3D-Data Structures: Overview

Grid

Groller, Theufl, Haidacher 68

Grid

Regular subdivision

Directly addresses cells

Simple neighborhood finding O(1)

+ E.g. for ray traversal
Problem:

¢ Too few/many cells
¢ = Hierarchical grid

roller, TheuBl, Haidacher

