
Advanced 3D-Data Structures

Eduard Gröller, Martin Haidacher

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Motivation

For different data sources and applications
different representations are necessary

Examples:
3D scanner: produces a set of spatial points
which are not connected to each other

Computer game: Scenes and characters are
usually represented as surface model
consisting of many polygons

A data structure for a certain application should
be able to fulfill the necessary requirements

2Gröller, Theußl, Haidacher

3D-Data Structures: Requirements

Representation of general objects

Exact representation of objects

Combinations of objects

Linear transformation

Interaction

Fast spatial searches

Memory capacity

Fast rendering

3Gröller, Theußl, Haidacher

3D-Data Structures: Overview

Point Cloud

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

kD Tree

Octree

Constructive Solid Geometry Tree

Bintree

Grid
4Gröller, Theußl, Haidacher

Point Cloud

Object = set (list) of points
E.g. from a digitizer or 3D scanner

For fast and simple preview

Exact representation if >=1 points/pixel
More efficient than 1 pixel sized polygons

Gröller, Theußl, Haidacher 5

Operations with Point Clouds

Transformations
Multiply the points in the point list with linear
transformation matrices

Combinations
Objects can be combined by appending the
point lists to each other

Rendering
Project and draw the points onto the image
plane

6Gröller, Theußl, Haidacher

Properties of Point Clouds

Advantages
Fast rendering
Exact representation & rendering possible
Fast transformations

Disadvantages
Many points (curved obj., exact representation)
High memory consumption
Limited combination operations

7Gröller, Theußl, Haidacher

Surfels (SURFace ELementS)

http://www.merl.com/projects/surfels/

movies: cab, wasp, salamander with holes,
salamander corrected (more movies on
web page)

QSplat (1/2)

 3D scan of 2.7 meter statue
of St. Matthew at 0.25 mm

 102.868.637 points
 File size: 644 MB
 Preprocessing time: 1 hour
 Demo on laptop (PII 366, 128

MB), no 3D graphics
hardware

 http://graphics.stanford.edu/so
ftware/qsplat/

9Gröller, Theußl, Haidacher

QSplat (2/2)

Interactive (8 frames/sec) High quality (8 sec)

10Gröller, Theußl, Haidacher

3D-Data Structures: Overview

Point Cloud

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

kD Tree

Octree

Constructive Solid Geometry Tree

Bintree

Grid
11Gröller, Theußl, Haidacher

Wire-Frame Model

17 I

2

3

4

5

6

8 2

A
B

CD

E
F G

H

J
K

L x1
y1
z1

x8
y8
z8

x5
y5
z5

x4
y4
z4

x3
y3
z3

x2
y2
z2

........

point list

LB
........

edge list
CA

1 2 3 4 5 8

AEdge list

Vertex list

Object is simplified to 3D lines, each edge of
the object is represented by a line in the model

12Gröller, Theußl, Haidacher

Operations with Wire-Frame Model

Transformations
Multiply the points in the point list with linear
transformation matrices

Combinations
Objects can be combined by appending the
point and edge lists to each other

Rendering
Projection of all points onto image plane and
drawing of edges in between

13Gröller, Theußl, Haidacher

Properties of Wire-Frame Models

Advantages
Quick rendering

Easy and quick transformations

Generation of models via digitization

Disadvantages
High memory consumption

Inexact (no surfaces, no occlusion)

Restricted combination possibilities

Curves are approximated by straight lines

14Gröller, Theußl, Haidacher

3D-Data Structures: Overview

Point Cloud

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

kD Tree

Octree

Constructive Solid Geometry Tree

Bintree

Grid
15Gröller, Theußl, Haidacher

Boundary Representation (B-Rep)

V1

V2

V3 V4

V5

E1

E2

E3
E4

E5

E6

S1 S2

vertex list edge list face list
V1: x1 y1 z1 E1: V1 V2 S1: E1 E2 E3
V2: x2 y2 z2 E2: V2 V3 S2: E2 E4 E5 E6
V3: x3 y3 z3 E3: V3 V1
V4: x4 y4 z4 E4: V3 V4
V5: x5 y5 z5 E5: V4 V5

E6: V5 V2
16Gröller, Theußl, Haidacher

Lists for B-Reps (1/4)
Face list S1 S2

17Gröller, Theußl, Haidacher

Lists for B-Reps (2/4)
Face list S1 S2

E1 E2 E3 E4 E5 E6

18Gröller, Theußl, Haidacher

Lists for B-Reps (3/4)
Face list

x y z x y z x y z x y z x y z
V1 V2 V3 V4 V5

S1 S2

19Gröller, Theußl, Haidacher

Lists for B-Reps (4/4)
Face list

Edge
list

Vertex
list

x y z x y z x y z x y z x y z
V1 V2 V3 V4 V5

S1 S2

20Gröller, Theußl, Haidacher

Winged Edge Data Structure

Alternative for normal hierarchical B-Rep

Here the central element is the edge:

Pstart
Pend

face_cw
face_ccw
pred_cw

succ_ccw
pred_ccw
succ_ccw

edge list

faces x
y
z1st edge

points

1st edge

Pend Pstart
pred_cwsucc_cw

pred_ccw

face_cw

face_ccw

succ_ccw

edge

21Gröller, Theußl, Haidacher

Operations with B-Reps (1/2)

Transformations
All points are transformed as with wire-frame
model, additionally surface equations or normal
vectors can be transformed

Rendering
Hidden surface or hidden line algorithms can
be used because the surfaces of the objects
are known, so that the visibility can be
calculated

22Gröller, Theußl, Haidacher

Operations with B-Reps (2/2)

Combinations
1. Split the polygons of object A at the
intersections with the polygons of object B

2. Split the polygons of object B at ... of A

3. Classify all polygons of A as "in B", "outside
B" or "on the surface of B“

4. Classify all polygons of B in the same way

5. Remove the redundant polygons of A and B
according to the operator and combine the
remaining polygons of A and B

23Gröller, Theußl, Haidacher

Combinations of B-Reps (1/4)

Every polygon has a box enclosure
 simple test if polygons can intersect

Use only convex polygons and produce only
convex polygons as results
 simple intersection tests

A B A B A B

1: 2:

 

24Gröller, Theußl, Haidacher

Combinations of B-Reps (2/4)

A ray is traced in the direction of the normal
vector of the polygon to be classified:

Ray hits no polygon of B  "outside B"

First polygon of B hit from front  "outside B"

First polygon of B hit from back  "in B"

A
B

A
B

"outside B" "in B"

25Gröller, Theußl, Haidacher

Combinations of B-Reps (3/4)

Improvement: points of A, which lie on the
surface of B, are marked as border points
during the dividing process (and vice versa)
 only very few polygons have to be classified
with the complex method

in B
outside A

border point

border point

A
B

26Gröller, Theußl, Haidacher

Combinations of B-Reps (4/4)

Polygons can be removed according to tables:

op.
A or B

A and B
A sub B

in B

yes
no
yes

outside B

no
yes
no

NV equal
no
no
yes

different
yes
yes
no

on B (coplanar)
For

polygons
of A

op.
A or B

A and B
A sub B

in A

yes
no
no

outside A

no
yes
yes

NV equal
yes
yes
yes

different
yes
yes
yes

on A (coplanar)
For

polygons
of B

27Gröller, Theußl, Haidacher

Requirements on B-Reps for this Alg.

No open (non-closed) objects

Only convex polygons

No double points

Additional links in the vertex list between
neighbor points with equal classification

........ xn

yn

zn

x4

y4

z4

x5

y5

z5

x5

y5

z5

x3

y3

z3

x2

y2

z2

x1

y1

z1

vertex list

28Gröller, Theußl, Haidacher

Partitioning of Object Surfaces

Necessary to approximate curved surfaces

Surfaces that can be parameterized:
E.g. free form surfaces, quadrics,
superquadrics

partitioning of parameter space, one patch for
every 2D parameter interval

Surfaces that cannot be parameterized:
E.g. implicit surfaces, "bent" polygons
 tesselation, subdivision surfaces

29Gröller, Theußl, Haidacher

Tesselation

Divide polygons in smaller polygons (triangles)
until the approximation is exact enough
Normal vector criterion as termination condition:

Normal vectors of neighboring polygons are similar:

N12  1–

N1
N2 Objekt

Approximation

30Gröller, Theußl, Haidacher

Properties of B-Reps

Advantages
General representation

Generation of models via digitization

Transformations are easy and fast

Disadvantages
High memory requirement

Combinations are relatively costly

Curved objects must be approximated

31Gröller, Theußl, Haidacher

3D-Data Structures: Overview

Point Cloud

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

kD Tree

Octree

Constructive Solid Geometry Tree

Bintree

Grid
32Gröller, Theußl, Haidacher

Binary Space Partitioning Tree

Special B-Rep for quick rendering with visibility
Especially of static scenes

x1

y1

z1

xn

yn

zn

x5

y5

z5

x4

y4

z4

x3

y3

z3

x2

y2

z2

........

point list

........

........

....

........

....

........

........

........

........

........

........

....

........

polygon nodes with
surface equation
and normal vector polygon vertices

33Gröller, Theußl, Haidacher

Binary Space Partitioning Tree

The base plane of the polygon in a node
partitions space in two halves:

In front of and behind the polygon
Left subtree of the node: contains only
polygons that are in front of the basis plane
Right subtree of the node: contains only
polygons that are behind the basis plane
Polygons that lie in both halves are divided by
the base plane into two parts

34Gröller, Theußl, Haidacher

Generation of BSP Trees

Convex objects: BSP tree is linear list

Else: conversion B-Rep  BSP tree

Algorithm:
1. Find the polygon who's plane intersects the
fewest other polygons and cut these in two

2. Divide the polygon list in two sets:
in front of that plane / behind that plane

3. The polygon found in 1. is the root of the
BSP tree, the left and the right subtrees can be
generated recursively (from two "halves")

35Gröller, Theußl, Haidacher

BSP Example

2D example:

1

2

3

4

Object

BSP-TreePolygon 1

Polygon 2

Polygon 3

Polygon 4

36Gröller, Theußl, Haidacher

More BSP Examples

1

2

3
4

5

6

3

4

1

2

5

6 or
1

2

3

4

1a1b

2

3

4

1 1a

1b

2

34

37Gröller, Theußl, Haidacher

BSP Trees as Solids

Left empty trees represent outside space

Right empty trees represent inside volumes

1

2

3
4 1

2

3

4

1a1b

2

3

4

 in

out in

 out

 out

 out

 out out

 out

 in in

 in

 out

BSP tree
or

38Gröller, Theußl, Haidacher

Operations with BSP Trees (1/2)

Rendering
BSP trees are very good for fast rendering

Painter´s Algorithm:

IF eye is in front of a (in A+)
THEN BEGIN draw all polygons of A-;

draw a;
draw all polygons of A+ END

ELSE BEGIN draw all polygons of A+;
(draw a);
draw all polygons of A- END;

39Gröller, Theußl, Haidacher

Operations with BSP Trees (2/2)

Transformations
Points, plane equation and normal vector have
to be transformed

Combinations
Perform combination with B-Rep, then
generate BSP tree

Combine BSP trees directly (faster)

40Gröller, Theußl, Haidacher

Combination of BSP Trees

The structure of one
tree has to act as
structure for the result
 one tree has to be
included into the other

B

A

41Gröller, Theußl, Haidacher

Combination of BSP Trees: 

aA

b

c

d

1B

2

3

4

1in
Bin

3in

4

1out
Bout

2

3out

aoutC

Aout  Bout

(= Bout)

Ain  Bin


Aout Ain

a aout

A
1in

2

4

ain
3out

Bout

Bin

b

c
d

B
1out



3in

42Gröller, Theußl, Haidacher

BSP Algorithm for A op B = C:

A or B homogeneous (full or empty)
 simple rules

Else:
1. Divide root polygon a of A at object B in ain,
aout

2. Root node c of C: if op=”and" then c:=ain

else c:=aout (with its plane)

3. Divide B at plane of a in Bin, Bout

4. Recursive evaluation of the subtrees:

Cleft=Aout op Bout Cright=Ain op Bin
43Gröller, Theußl, Haidacher

Simple BSP Node Combination Rules

op

or

and

sub

A

inhom.
inhom.

full
empty
inhom.
inhom.

full
empty
inhom.
inhom.

full
empty

B

full
empty
inhom.
inhom.

full
empty
inhom.
inhom.

full
empty
inhom.
inhom.

A op B

full
A

full
B
A

empty
B

empty
empty

A
–B

empty
44Gröller, Theußl, Haidacher

Combination of BSP Trees: 

aA

b

c

d

1B

2

3

4

1out

2

3out

aoutC

a aout

A
1in

2

4

ain
3out

Bout

Bin

b

c
d

B
1out


b

c

dout

3in

4out
3in

45Gröller, Theußl, Haidacher

Combination of BSP Trees: 

aA

b

c

d

1B

2

3

4

1in
Bin

3in

4

1out
Bout

2

3out

ainC

Aout  Bout

(= {})

Ain  Bin


Aout Ain

a aout

A
1in

2

4

ain
3out

Bout

Bin

b

c
d

B
1out



3in

46Gröller, Theußl, Haidacher

Combination of BSP Trees: 

aA

b

c

d

1B

2

3

4
1in

4in

ainC


a aout

A
1in

2

4

ain
3Bout

Bin

b

c
d

B
1out



(bin and cin are empty)

din

47Gröller, Theußl, Haidacher

Properties of BSP Trees

Advantages
Fast rendering

Fast transformation

Combinations faster than for B-Reps

General representation

Generation of models via digitization

Tree structure (fast search)

48Gröller, Theußl, Haidacher

Properties of BSP Trees

Disadvantages
Curved objects must be approximated

Only convex polygons

High memory cost

49Gröller, Theußl, Haidacher

3D-Data Structures: Overview

Point Cloud

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

kD Tree

Octree

Constructive Solid Geometry Tree

Bintree

Grid
50Gröller, Theußl, Haidacher

kD Tree

 Special case of BSP Tree

 Only axes-aligned partitioning planes =>
specified by one value

 Partitioning direction specified either implicitly
(pre-defined order) or explicitly

 1D Tree  binary tree

51Gröller, Theußl, Haidacher

kD Tree Example: 2-D Tree

52Gröller, Theußl, Haidacher

3D-Data Structures: Overview

Point Cloud

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

kD Tree

Octree

Constructive Solid Geometry Tree

Bintree

Grid
53Gröller, Theußl, Haidacher

Octree

Used to represent solid volumetric objects

Each node is subdivided in 8 subspaces

Each subspace is either empty, full or further
divided

The subdivision stops when an object can be
represented accurate enough

Gröller, Theußl, Haidacher 54

Octree Example

Gröller, Theußl, Haidacher 55

Operations with Octrees

Transformations
Hard to implement; easy: rotations of 90°

Combinations
Can easily be done by logical operations; both
octrees must be adapted to each other to have
the same depth in each subspace

Rendering
The octree is rendered depending on the view
direction starting with the subspace farthest
away from the viewer

Gröller, Theußl, Haidacher 56

Properties of Octrees

Advantages
Combinations are easy to implement

Spatial search is fast due to the tree structure

Rendering algortihm is fast

Disadvantages
High storage consumption for approximated
objects

Transformations are not trivial in general

General objects cannot be represented exactly

Gröller, Theußl, Haidacher 57

Extended Octrees

Additional node types:
Face nodes: contain a surface
Edge nodes: contain an edge
Vertex nodes: contain a corner point

Vertex-Node

Face-Node

Edge-Node

58Gröller, Theußl, Haidacher

Generation of Extended Octrees

1. Generate B-Rep

2. Divide point and surface list at the
subdivision planes into 8 sets

3. For each octant:
Point and surface lists empty full or empty

Only one vertexvertex node

Only one surface face node

Only two surfaces edge node

Else: subdivide recursively

59Gröller, Theußl, Haidacher

Octree as Spatial Directory

Octree as search structure for objects in other
representations

E.g. for B-Reps:

octree of low depth is sufficient

........

........

object list

face list

search octree

60Gröller, Theußl, Haidacher

3D-Data Structures: Overview

Point Cloud

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

kD Tree

Octree

Constructive Solid Geometry Tree

Bintree

Grid
61Gröller, Theußl, Haidacher

Constructive Solid Geometry Tree

A Constructive Solid Geometry (CSG) Tree
consists of simple primitives, transformations
and logical operations

Useful to describe complex objects with a small
number of primitives

Examples for primitives
Cube

Sphere

Cylinder

62Gröller, Theußl, Haidacher

CSG Tree Example

63Gröller, Theußl, Haidacher

Operations with CSG Trees

Transformations
An object is transformed by adding the
transformation to the transformation of each
primitive

Combinations
Two objects are simple combined by adding
them as children in a new tree

Rendering
Needs to be converted into a B-Rep or it is
rendered with raytracing

64Gröller, Theußl, Haidacher

Properties of CSG Trees

Advantages
Minimal storage consumption

Combinations and transformations are simple

Objects can be represented exactly

Tree structure (fast search)

Disadvantages
Cannot be rendered directly; slow rendering

Model generation cannot be done through
digitization of real objects

65Gröller, Theußl, Haidacher

3D-Data Structures: Overview

Point Cloud

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

kD Tree

Octree

Constructive Solid Geometry Tree

Bintree

Grid
66Gröller, Theußl, Haidacher

Bintree

3D Tree

Subdivision order xyzxyz...

Choose separation plane for
optimized (irregular)
subdivision

Fewer nodes than octree

67Gröller, Theußl, Haidacher

3D-Data Structures: Overview

Point Cloud

Wire-frame Model

Boundary Representation

Binary Space Partitioning Tree

kD Tree

Octree

Constructive Solid Geometry Tree

Bintree

Grid
68Gröller, Theußl, Haidacher

Grid

Regular subdivision

Directly addresses cells

Simple neighborhood finding O(1)
E.g. for ray traversal

Problem:
Too few/many cells

 Hierarchical grid

69Gröller, Theußl, Haidacher

