
1

Sampling and Reconstruction

Institute of Computer Graphics 
and Algorithms

Vienna University of Technology

Peter Rautek, Eduard Gröller, Thomas Theußl

Motivation

Theory and practice of 
sampling and reconstruction
Aliasing

Understanding the problem 
Handling the problem

E lExamples:
Photography/Video
Rendering
Computed Tomography
Collision detection
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Overview
Introduction
Tools for Sampling and Reconstruction

Fourier Transform
Convolution (dt.: Faltung)
Convolution Theorem
FilteringFiltering

Sampling
The mathematical model

Reconstruction 
Sampling Theorem
Reconstruction in Practice
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Image Data
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Demo - Scan Lines
- Sampling

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/sampling/introduction_to_sampling_java_browser.html

Image Storage and Retrieval
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Sampling Problems

Eduard Gröller, Thomas Theußl, Peter Rautek 5



2

Overview

Introduction
Tools for Sampling and Reconstruction

Fourier Transform
Convolution (dt.: Faltung)
Convolution Theorem
FilteringFiltering

Sampling
The mathematical model

Reconstruction 
Sampling Theorem
Reconstruction in Practice

Eduard Gröller, Thomas Theußl, Peter Rautek 6

Sampling Theory

Relationship between signal and samples
View image data as signals
Signals are plotted as intensity vs. spatial 
domain
Signals are represented as sum of sine wavesSignals are represented as sum of sine waves 
- frequency domain
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Square Wave Approximation
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Fourier Series

Eq1:

Eq2:
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Euler’s identity: 
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Fourier Transform

Link between spatial and frequency domain
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Box & Tent
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Square Wave & Scanline
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Fourier Transform

Yields complex functions for frequency 
domain
Extends to higher dimensions
Complex part is phase information - usually 
ignored in explanation and visual analysisignored in explanation and visual analysis

Alternative: 
Hartley transform
Wavelet transform
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Discrete Fourier Transform

For discrete signals (i.e., sets of samples)
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Complexity for N samples: 
DFT O(N²)
Fast FT (FFT): O(N log N)
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Demo - Fast Fourier Transform
- Different Frequencies

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/fft1DApp/1d_fast_fourier_transform_java_browser.html
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Convolution

Operation on two functions
Result: Sliding weighted average of a function
The second function provides the weights
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Demo - Copying (Dirac Pulse)
- Averaging (Box Filter)

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/convolution/convolution_java_browser.html

Convolution - Examples
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Convolution Theorem

The spectrum of the convolution of two 
functions is equivalent to the product of the 
transforms of both input signals, and vice 
versa.
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Example - Low-Pass

Low-pass filtering performed on Mandrill 
scanline

Spatial domain: convolution with sinc
function
F d i t ff f hi hFrequency domain: cutoff of high 
frequencies - multiplication with box filter

Sinc function corresponds to box function and vice 
versa!
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Low-Pass in Spatial Domain 1
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Low-Pass in Spatial Domain 2
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Sampling

The process of sampling is a multiplication of  
the signal with a comb function

)(comb)()( T xxfxfs ⋅=

The frequency response is convolved with a 
transformed comb function.
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FT of Base Functions

Comb function: ω)(comb)(comb T1T ⇔x
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Reconstruction

Recovering the original function
from a set of samples

Sampling theorem
Id l t tiIdeal reconstruction

Sinc function
Reconstruction in practice
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Definitions

A function is called band-limited if it contains 
no frequencies outside the interval [-u,u]. u is 
called the bandwidth of the function

The Nyquist frequency of a function is twice its 
b d idth i 2bandwidth, i.e. w = 2u
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Sampling Theorem

A function f(x) that is
band-limited and
sampled above the Nyquist frequency

is completely determined by its samplesis completely determined by its samples.
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Sampling at Nyquist Frequency
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Sampling Below Nyquist Frequency
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Demo - Under sampling
- Nyquist Frequency

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/nyquist/nyquist_limit_java_browser.html

Ideal Reconstruction

Replicas in frequency domain must not 
overlap
Multiplying the frequency response with a box 
filter of the width of the original bandwidth 
restores originalg
Amounts to convolution with Sinc function
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Sinc Function

Infinite in extent
Ideal reconstruction filter
FT of box function

0sin⎧ if
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Sinc & Truncated Sinc
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Reconstruction: Examples

Sampling and reconstruction of the Mandrill 
image scanline signal

with adequate sampling rate
with inadequate sampling rate
demonstration of band-limiting

With Sinc and tent reconstruction kernels
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Adequate Sampling Rate
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Adequate Sampling Rate
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Inadequate Sampling Rate
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Inadequate Sampling Rate
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Band-Limiting a Signal
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Band-Limiting a Signal
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Reconstruction in Practice

Problem: which reconstruction kernel should 
be used?

Genuine Sinc function unusable in practice
Truncated Sinc often sub-optimalTruncated Sinc often sub-optimal

Various approximations exist; none is optimal 
for all purposes 
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Tasks of Reconstruction Filters

Remove the extraneous replicas of the 
frequency response
Retain the original undistorted frequency 
response
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Used Reconstruction Filters

Nearest neighbour
Linear interpolation
Symmetric cubic filters
Windowed Sinc
M hi ti t d f t ti th SiMore sophisticated ways of truncating the Sinc
function
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Box & Tent Responses
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Windowed Sinc Responses
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Sampling & Reconstruction Errors

Aliasing: due to overlap of original frequency 
response with replicas - information loss
Truncation Error: due to use of a finite 
reconstruction filter instead of the infinite Sinc
filter
Non-Sinc error: due to use of a reconstruction 
filter that has a shape different from the Sinc
filter
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Interpolation - Zero Insertion

Operates on series of n samples
Takes advantage of DFT properties

Algorithm:
P f DFT iPerform DFT on series
Append zeros to the sequence
Perform the inverse DFT
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Zero Insertion - Properties

Preserves frequency spectrum
Original signal has to be sampled above 
Nyquist frequency
Values can only be interpolated at evenly 
spaced locationsspaced locations
The whole series must be accessible, and it is 
always completely processed
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Zero Insertion - Original Series
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Zero Insertion - Interpolation
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Conclusion
Sampling

Going from continuous to discrete signal
Mathematically modeled with a multiplication with comb 
function
Sampling theorem: How many samples are needed

Reconstruction 
Sinc is the ideal filter but not practicable
Reconstruction in practice
Aliasing
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Sampling and Reconstruction
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Questions
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