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Computational Photography

Eduard Gröller

Most of material and slides courtesy of 
Fredo Durand (http://people.csail.mit.edu/fredo/) and
Oliver Deussen (http://graphics.uni-konstanz.de/mitarbeiter/deussen.php)

What is computational photography

• Convergence of image processing, computer vision, 
computer graphics and photography

• Digital photography:

– Simply replaces traditional sensors and recording by 
digital technology

– Involves only simple image processing

• Computational photography

– More elaborate image manipulation, more 
computation

– New types of media (panorama, 3D, etc.)

– Camera design that take computation into account

[Raskar and
Tumblin]

Processing, and

Generalized Illumination

Generalized Optics

Generalized Sensor

http://web.media.mit.edu/~raskar/photo/

Computational Photography – Taxonomy (1)

Computational illumination
Flash/no-flash imaging
Multi-flash imaging
Different exposures imaging
Image-based Relighting
Other uses of structured illumination

Computational optics
Coded aperture imaging
Coded exposure imaging
Light field photography
Catadioptric imaging
Wavefront coding
Compressive imaging 

Eduard Gröller

Computational Photography – Taxonomy (2)

Computational processing
Panorama mosaicing
Matte extraction
Digital photomontage
High dynamic range imaging
All f i iAll-focus imaging

Computational sensors
Artificial retinas
High dynamic range sensors
Retinex sensors

Eduard Gröller

Tone mapping

• One of your assignments!

Before After
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Defocus Matting
• With Morgan McGuire, Wojciech Matusik, 

Hanspeter Pfister, John “Spike” Hughes

• Data-rich: use 3 streams with different focus

Motion magnification

Video

Syllabus

• Image formation 

• Color and color perception 

• Demosaicing

Syllabus

• High Dynamic 
Range Imaging 

• Bilateral 
filtering and 
HDR display 

• Matting 

Syllabus

• Gradient image manipulation 

Syllabus

• Non-parametric 
image synthesis, 
inpainting, analogies 
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Syllabus

• Tampering detection 
and higher-order 
statistics 

Syllabus

• Panoramic imaging 

• Image and video registration 

• Spatial warping operations 

Syllabus

• Active flash methods 

• Lens technology 

• Depth and defocus 
No-flash

Flash

our 
lresult

Syllabus
• Future cameras 

• Plenoptic function and light fields 

Modern cameras use image stacks (1)
[Deussen et al.]

Modern cameras use image stacks (1)
[Deussen et al.]
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Modern cameras use image stacks (1)
[Deussen et al.]

Modern cameras use image stacks (1)
[Deussen et al.]

Modern cameras use image stacks (1)
[Deussen et al.]

Modern cameras use image stacks (2)
[Deussen et al.]

Modern cameras use image stacks (2)
[Deussen et al.]

 The web: a completely new source of image information

[Deussen et al.]
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[Deussen et al.] [Deussen et al.]

[Deussen et al.] [Deussen et al.]

[Deussen et al.] [Deussen et al.]
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[Deussen et al.]

Scene Completion Using Millions of Photographs
Hays and Efros, Siggraph 2007

[Debevec, Raskar, Tumblin]

Flash/ No Flash Photography

[Deussen et al.]

Beautification

[Deussen et al.]

Beautification

[Deussen et al.]

Beautification

[Deussen et al.]
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Beautification

[Deussen et al.]

DataData--Driven Enhancement Driven Enhancement 
of Facial Attractivenessof Facial Attractiveness

Tommer Leyvand, Daniel Cohen-Or, Gideon Dror and Dani Lischinski

[Debevec, Raskar, Tumblin]

Gi i l IGigapixel Images

[Deussen et al.]

Displaying Gigapixel – Tiled Displays

 Form a large display by combining several smaller ones

 Reverse process to stitching large images from smaller ones

 Two types:

 Monitor walls (typically LCD)

 Multi‐projector back‐projection systems

100 megapixel wall, Univ. Illinois 10 megapixel wall, Univ. Konstanz

[Deussen et al.]

Tiled Monitor Walls

 Advantages

 Relatively cheap

 Scalable in size

 No calibration

 Problems

 Clearly visible borders (mullions)

 Compensate for borders

 No multi‐user stereo

HIPerSpace OptIPortal (UC San Diego): 220 million pixels (55 screens)

[Deussen et al.]

Capturing Gigapixel Images

[Deussen et al.]
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Example: University of Konstanz / MSR

3,600,000,000 Pixels
Created from about 800 8 MegaPixel Images

[Deussen et al.]

Example: University of Konstanz / MSR

[Deussen et al.]

Example: University of Konstanz / MSR

150 degrees

“Normal” perspective projections cause distortions.

[Deussen et al.]

Example: University of Konstanz / MSR

High Dynamic Range

100X variation in Radiance

[Deussen et al.]

Deep Photo

 Can we change an normal outdoor photography after the shot?

 Yes, especially when depth information is available

[Deussen et al.]

Our Approach

Input Photo Depth Map

Camara with GPS Virtual Earth data

Input Photo Depth Map

[Deussen et al.]
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Applications

 Image Enhancement

 Remove haze

 Relighting

 Novel View synthesis

 Expanding the FOV

Original Dehazed Relighted

 Expanding the FOV

 Change view point

 Information visualization

 Integration of GIS data
Original Expanded FOV

Annotated
[Deussen et al.]

Photography - Basics

Overview

• Lens and viewpoint determine perspective

• Aperture and shutter speed determine exposure

• Aperture and other effects determine depth of field

• Film or sensor record image

• Focal length (in mm)
– Determines the field of view. 

wide angle (<30mm) to telephoto (>100mm)
• Focusing distance

– Which distance in the scene is sharp
• Depth of field

– Given tolerance, zone around the focus distance that is sharp
• Aperture (in f number)

R ti f d di t d f l l– Ratio of used diameter and focal lens. 
Number under the divider  small number = large aperture 
(e.g. f/2.8 is a large aperture, f/16 is a small aperture)

• Shutter speed (in fraction of a second)
– Reciprocity relates shutter speed and aperture

• Sensitivity (in ISO)
– Linear effect on exposure
– 100 ISO is for bright scenes,  ISO 1600 is for dark scenes 

Quantities

focal 
length focus distance

sensor
size

field 
of 

view

depth of field

ap
er

tu
re

lens

Focal length
<30mm: wide angle

50mm: standard

>100mm telephoto

Affected by sensor size
(crop factor)

24mm

50mm

135mm
focal length

field 
of 

view
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Exposure
• Aperture (f number)

– Expressed as ratio between focal length and aperture diameter: 
diameter = f / <f number>

– f/2.0, f/2.8, f/4.0, f/5.6, f/8.0, f/11, f/16   (factor of sqrt (2))
– Small f number means large aperture
– Main effect: depth of field
– A good standard lens has max aperture f/1.8. 

A cheap zoom has max aperture f/3.5
• Shutter speed• Shutter speed

– In fraction of a second
– 1/30, 1/60, 1/125, 1/250, 1/500 (factor of 2)
– Main effect: motion blur
– A human can usually hand-hold up to 1/f seconds, where f is focal length 

• Sensitivity
– Gain applied to sensor
– In ISO, bigger number, more sensitive (100, 200, 400, 800, 1600)
– Main effect: sensor noise

Reciprocity between these three numbers: 
for a given exposure, one has two degrees of freedom. 

Depth of field
• The bigger the aperture (small f number), 

the shallower the DoF
– Just think Gaussian blur: bigger kernel  more blurry
– This is the advantage of lenses with large maximal aperture: 

they can blur the background more 
• The closer the focus, the smaller the DoF
• Focal length has a more complex effect on DoF• Focal length has a more complex effect on DoF 

– Distant background more blurry with telephoto
– Near the focus plane, depth of field only depends on image size

• Hyperfocal distance: 
– Closest focusing distance for which the depth of field includes 

infinity 
– The largest depth of field one can achieve. 
– Depends on aperture. 

What is an image?
• We can think of an image as a function, f,

• from R2 to R:
– f( x, y ) gives the intensity at position ( x, y ) 

– Realistically, we expect the image only to be 
defined over a rectangle, with a finite range:g , g

• f: [a,b]x[c,d]  [0,1]

• A color image is just three functions pasted 
together.  We can write this as a “vector-
valued” function: ( , )

( , ) ( , )

( , )

r x y

f x y g x y

b x y

 
   
  

Images as functions

x

y
f(x,y)

Image Processing

• image filtering: change range of image
• g(x) = h(f(x))f

x

h
f

xx x

f

x

h
f

x

• image warping: change domain of image

• g(x) = f(h(x))

Image Processing

• image filtering: change range of image
• g(x) = h(f(x))

h

h

• image warping: change domain of image

• g(x) = f(h(x))
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Point Processing

• The simplest kind of range transformations 
are these independent of position x,y:

• g = t(f)

Thi i ll d i t i• This is called point processing.

• Important: every pixel for himself – spatial 
information completely lost!

Negative

Contrast Stretching
Image Histograms

Cumulative Histograms

s = T(r)

Histogram Equalization Image Filtering – Change Range of Image

Only range based: histogram manipulation

Take only spatial neighborhood (domain) into 
account averaging median Gaussianaccount – averaging, median, Gaussian

Domain + Range considered: Bilateral filtering 
(edge-preserving smoothing)

Eduard Gröller
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Bilateral filter

• Tomasi and Manduci 1998
http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.
pdf

• Related to 

– SUSAN filter
[Smith and Brady 95] 
http://citeseer.ist.psu.edu/smith95susan.html

– Digital-TV [Chan, Osher and Chen 2001]
http://citeseer.ist.psu.edu/chan01digital.html

– sigma filter 
http://www.geogr.ku.dk/CHIPS/Manual/f187.htm

Start with Gaussian filtering
• Here, input is a step function + noise

J  f  I

output input

Gaussian filter as weighted average

• Weight of   depends on distance to x


 f (x,) I()J(x) 

output input




x

x


The problem of edges
• Here,          “pollutes” our estimate J(x)

• It is too different 




 f (x,) I()J(x) 

output input

x



I(x)



Principle of Bilateral filtering
[Tomasi and Manduchi 1998]

• Penalty g on the intensity difference

J(x)  1

k(x)

 f (x,) g(I() I(x)) I()

output input



x 
I(x)

Bilateral filtering
[Tomasi and Manduchi 1998]

• Spatial Gaussian f

J(x)  1

k(x)

 f (x,)g(I() I(x)) I()

output input



x 

x
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Bilateral filtering
[Tomasi and Manduchi 1998]

• Spatial Gaussian f

• Gaussian g on the intensity difference

J(x)  1

k(x)

 f (x,) g(I()  I(x))I()

output input



x 
I(x)

Normalization factor
[Tomasi and Manduchi 1998]

• k(x)=

J(x)  1

k(x)

 f (x,) g(I() I(x)) I()


 f (x,) g(I() I(x))

output input



Other view

• The bilateral filter uses the 3D distance 6.088 Digital and Computational Photography 
6.882 Advanced Computational Photography

Dynamic Range and Contrast

Frédo Durand
MIT - EECS

Light, exposure and dynamic range

• Exposure: how bright is the scene overall

• Dynamic range: contrast in the scene

• Bottom-line problem: illumination level and 
contrast are not the same for a photo and for thecontrast are not the same for a photo and for the 
real scene. 

Example:
• Photo with a 

Canon G3

• Jovan is too dark

• Sky is too bright



14

Real world dynamic range
• Eye can adapt from ~ 10-6 to 106 cd/m2

• Often 1  :  100,000 in a scene

10-6 10610 10
Real world

High dynamic range

spotmeter

The world is high dynamic range

• Slide from Paul Debevec

Problem 2: Picture dynamic range
• Typically   1: 20 or 1:50

– Black              is   ~ 50x darker than white

• Max 1:500

10-6 10610 10

10-6 106

Real world

Picture

Low contrast

Problem 1

• The range of illumination levels that we encounter 
is 10 to 12 orders of magnitudes

• Negatives/sensors can record 2 to 3 orders of 
magnitude

• How do we center this window? Exposure problem. p p
10-6 106

100

Negative/sensor

103

Real scenes

Contrast reduction
• Match limited contrast of the medium

• Preserve details

10-6 106High dynamic range10 10

10-6 106

Real world

Picture

Low contrast

High dynamic range

Limited dynamic range can be good!
• W. Eugene Smith photo of Albert Schweitzer
• 5 days to print!
• Things can be related because the intensity is more similar
• Balance, composition
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Multiple exposure photography
• Sequentially measure all segments of the range

10-6 106

Real world
High dynamic range

10-6 106

Picture

Low contrast

Photoshop curves
• Specify an arbitrary remapping curve

• Especially useful for black and white

From Photography by London et al. 

Sunnybrook HDR display

Slide from the 2005 Siggraph course on HDR

Gradient Manipulation

Today: Gradient manipulation

Idea: 

• Human visual system is very sensitive to gradient

• Gradient encode edges and local contrast quite well

• Do your editing in the gradient domaino you ed t g t e g ad e t do a

• Reconstruct image from gradient

• Various instances of this idea,  I’ll mostly follow Perez et al. Siggraph  2003

http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

r

Problems with direct cloning

From Perez et al. 2003
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Solution: clone gradient Gradients and grayscale images

• Grayscale image: scalars

• Gradient: 

• Overcomplete!

• What’s up with this? 

• Not all vector fields are the gradient of an image!

2D vectors

Not all vector fields are the gradient of an image!

• Only if they are curl-free (a.k.a. conservative)

– But it does not matter for us

Seamless Poisson cloning

• Given vector field v (pasted gradient), find the value 
of f in unknown region that optimize: 

Pasted gradient Mask

Background

unknown
region

Discrete 1D example: minimization
• Copy to

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

-1

-1

-1

+2

+1

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

? ? ? ?

• Min ((f2-f1)-1)2

• Min ((f3-f2)-(-1))2

• Min ((f4-f3)-2)2

• Min ((f5-f4)-(-1))2

• Min ((f6-f5)-(-1))2

With 
f1=6
f6=1

1D example: minimization
• Copy to

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

-1

-1

-1

+2

+1

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

? ? ? ?

• Min ((f2-6)-1)2 ==> f2
2+49-14f2

• Min ((f3-f2)-(-1))2 ==> f3
2+f2

2+1-2f3f2 +2f3-2f2

• Min ((f4-f3)-2)2 ==> f4
2+f3

2+4-2f3f4 -4f4+4f3

• Min ((f5-f4)-(-1))2 ==> f5
2+f4

2+1-2f5f4 +2f5-2f4

• Min ((1-f5)-(-1))2 ==> f5
2+4-4f5

1D example: big quadratic
• Copy to

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

-1

-1

-1

+2

+1

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

? ? ? ?

• Min (f2
2+49-14f2

+ f3
2+f2

2+1-2f3f2 +2f3-2f2

+ f4
2+f3

2+4-2f3f4 -4f4+4f3

+ f5
2+f4

2+1-2f5f4 +2f5-2f4

+ f5
2+4-4f5) 

Denote it Q
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1D example: derivatives
• Copy to

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

-1

-1

-1

+2

+1

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

? ? ? ?

Min (f2
2+49-14f2

+ f3
2+f2

2+1-2f3f2 +2f3-2f2

+ f4
2+f3

2+4-2f3f4 -4f4+4f3

+ f5
2+f4

2+1-2f5f4 +2f5-2f4

+ f5
2+4-4f5) 

Denote it Q

1D example: set derivatives to zero
• Copy to

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

-1

-1

-1

+2

+1

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

? ? ? ?

==>

1D example
• Copy to

3

4

5

6

-1

-1

-1

+2

+1

3

4

5

6

0

1

2

0
1 2 3 4 5 6 7 0

1

2

0
1 2 3 4 5 6 7

1D example: remarks
• Copy to

• Matrix is sparse

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

-1

-1

-1

+2

+1

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

• Matrix is sparse

• Matrix is symmetric 

• Everything is a multiple of 2  

– because square and derivative of square

• Matrix is a convolution (kernel -2 4 -2)

• Matrix is independent of gradient field. Only RHS is

• Matrix is a second derivative

Recap
• Find image whose gradient best approximates the 

input gradient 

– least square Minimization

• Discrete case: turns into linear equation

– Set derivatives to zero

– Derivatives of quadratic ==> linear

• Continuous: turns into Euler-Lagrange form

–  f = div v

• When gradient is null, membrane interpolation

– Linear interpolation in 1D

Result (eye candy)
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Seamless Image Stitching in the Gradient Domain

• Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss
http://www.cs.huji.ac.il/~alevin/papers/eccv04-blending.pdf
http://eprints.pascal-network.org/archive/00001062/01/tips05-blending.pdf

• Various strategies (optimal cut, feathering)

Poisson Matting

• Sun et al. Siggraph 2004

• Assume gradient of F & B is negligible

• Plus various image-editing tools to refine matte

Poisson-ish mesh editing
• http://portal.acm.org/citation.cfm?i

d=1057432.1057456

• http://www.cad.zju.edu.cn/home/xu
dong/Projects/mesh_editing/main.h
tm

• http://people.csail.mit.edu/sumner/r
esearch/deftransfer/

Inpainting

• More elaborate energy functional/PDEs

• http://www-mount.ee.umn.edu/~guille/inpainting.htm
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6.098 Digital and Computational Photography 
6.882 Advanced Computational Photography

Matting & Compositing

Frédo Durand
MIT - EECS

Motivation: compositing

Combining multiple images. Typically, paste a 
foreground object onto a new background

• Movie special effect

• Multi-pass CG

• Combining CG & film

• Photo retouching

– Change background

– Fake depth of field

– Page layout: extract objects, magazine covers

From Cinefex

Photo editing

• Edit the background independently from foreground

Photo editing

• Edit the background independently from foreground

Technical Issues

• Compositing
– How exactly do we handle transparency?

• Smart selection 
– Facilitate the selection of an object

• Matte extraction
– Resolve sub-pixel accuracy, estimate transparency

• Smart pasting
– Don't be smart with copy, be smart with paste
– See gradient manipulation

• Extension to video
– Where life is always harder
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Alpha

• : 1 means opaque, 0 means transparent

• 32-bit images: R, G, B, 

From the Art & Science of Digital Compositing

Compositing

• Non premultiplied version:
Given the foreground color F=(RF, GF, BF), the 
background color (RB, GB, BB) and  for each pixel

• The over operation is: C= F+(1-)B

– (in the premultiplied case, omit the first )



F

C

B

Matting problem

• Inverse problem: 
Assume an image is the over composite of a 
foreground and a background

• Given an image color C, find F, B and  so that
C= F+(1-)B



F?

C

B?

Matting ambiguity

• C= F+(1-)B

• How many unknowns, how many equations?



F?

C

B?

Matting ambiguity

• C= F+(1-)B

• 7 unknowns:  and triplets for F and B

• 3 equations, one per color channel

C

Matting ambiguity

• C= F+(1-)B

• 7 unknowns:  and triplets for F and B

• 3 equations, one per color channel

• With known background (e.g. blue/green screen): 

4 unknowns, 3 equationsu ow s, 3 equat o s

C

B

F



21

Questions?

From Cinefex

Questions?

Natural matting 

[Ruzon & Tomasi 2000, Chuang et al. 2001]

• Given an input image with 
arbitrary background

• The user specifies a coarse Trimap
(known Foreground, known background 
and unknown region)

• Goal: Estimate F, B, alpha in the 
unknown region

– We don’t care about B, but it’s a 
byproduct/unkown

Now, what tool do we know to estimate 
something, taking into account all sorts of 
known probabilities?

images from Chuang et al

Bayes theorem for matting

P(x|y) = P(y|x) P(x) / P(y)

The parameters 
you want to 

estimateWhat you observe Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

Matting and Bayes

• What do we observe?

P(x|y) = P(y|x) P(x) / P(y)

The parameters 
you want to 

estimateWhat you observe Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

Matting and Bayes

• What do we observe?

– Color C at a pixel

P(x|C) = P(C|x) P(x) / P(C)

The parameters 
you want to 

estimateColor you observe Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.
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Matting and Bayes

• What do we observe: Color C

• What are we looking for?

P(x|C) = P(C|x) P(x) / P(C)

The parameters you 
want to estimate

Color you observe Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

Matting and Bayes

• What do we observe: Color C

• What are we looking for: F, B, 

P(F,B,|C) = P(C|F,B,) P(F,B,) / P(C)

Foreground, 
background, 

transparency you 
want to estimateColor you observe

Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

Matting and Bayes

• What do we observe: Color C

• What are we looking for: F, B, 
• Likelihood probability?

– Given F, B and Alpha, probability that we observe C

P(F,B,|C) = P(C|F,B,) P(F,B,) / P(C)

Foreground, 
background, 

transparency you 
want to estimateColor you observe

Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

Matting and Bayes

• What do we observe: Color C

• What are we looking for: F, B, 
• Likelihood probability?

– Given F, B and Alpha, probability that we observe C

– If measurements are perfect, easu e e ts a e pe ect,
non-zero only if C= F+(1-)B

– But assume Gaussian noise with variance C

P(F,B,|C) = P(C|F,B,) P(F,B,) / P(C)

Foreground, 
background, 

transparency you 
want to estimateColor you observe

Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

Matting and Bayes

• What do we observe: Color C

• What are we looking for: F, B, 
• Likelihood probability: Compositing equation + 

Gaussian noise with variance C

• Prior probability:

– How likely is the foreground to have color F? the 
background to have color B? transparency to be 

P(F,B,|C) = P(C|F,B,) P(F,B,) / P(C)

Foreground, 
background, 

transparency you 
want to estimateColor you observe

Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

Matting and Bayes

• What do we observe: Color C

• What are we looking for: F, B, 
• Likelihood probability: Compositing equation + 

Gaussian noise with variance C

• Prior probability: 
Build a probability distribution from the known regions

– This is the heart of Bayesian matting

P(F,B,|C) = P(C|F,B,) P(F,B,) / P(C)

Foreground, 
background, 

transparency you 
want to estimateColor you observe

Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.
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Questions?

From Cinefex

From 
Chuang 

et al 
2001

6.098 Digital and Computational Photography 
6.882 Advanced Computational Photography

Image Warping and Morphing

Frédo Durand

Bill Freeman

MIT - EECS

Intelligent design & image warping

• D'Arcy Thompson 
http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html

http://en.wikipedia.org/wiki/D'Arcy_Thompson

• Importance of shape and structure in 
evolution

Morphing

• Input: two images I0 and IN

• Expected output: image sequence Ii, with i {1..N-1}

• User specifies sparse correspondences on the images

– Pairs of vectors {(P0
j, PN

j)}

Morphing

• For each intermediate frame It

– Interpolate feature locations Pt
i= (1- t) P0

i + t P1
i

– Perform two warps: one for I0, one for I1

• Deduce a dense warp field from the pairs of features

• Warp the pixels

– Linearly interpolate the two warped images
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Image Warping – parametric
• Move control points to specify a spline warp

• Spline produces a smooth vector field

Slide Alyosha Efros

Warp specification - dense
• How can we specify the warp?

Specify corresponding spline control points
• interpolate to a complete warping function

But we want to specify only a few points, not a grid

Slide Alyosha Efros

Warp specification - sparse
• How can we specify the warp?

Specify corresponding points
• interpolate to a complete warping function

• How do we do it?

How do we go from feature points to pixels?

Slide Alyosha Efros

Warp as interpolation

• We are looking for a warping field

– A function that given a 2D point, returns a warped 2D 
point

• We have a sparse number of correspondences

– These specify values of the warping field

• This is an interpolation problem

– Given sparse data, find smooth function

Interpolation in 1D

• We are looking for a function f

• We have N data points: xi, yi

– Scattered: spacing between xi is non-uniform

• We want f so that

– For each i, f(xi)=yio eac , f( i) yi

– f is smooth

• Depending on notion of smoothness, different f

Radial Basis Functions (RBF)

• Place a smooth kernel R 
centered on each data point xi

• f (z) =  i R(z, xi)
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Radial Basis Functions (RBF)

• Place a smooth kernel R 
centered on each data point xi

• f (z) =  i R(z, xi) 

• Find weights i to make sure we interpolate the data

for each i, f(xi)=yi

Kernel

• Many choices

• e.g. inverse multiquadric

• where c controls falloff

• Lazy way: set c to an arbitrary constant (pset 4)

• Smarter way: c is different for each kernel. For each 
xi, set c as the squared distance to the closest other xj

Variations of RBF

• Lots of possible kernels

– Gaussians e-r2/2

– Thin-plate splines r2 log r

• Sometimes add a global polynomial term

Input images

Feature correspondences

• The feature locations will be our xi

• Yes, in this example, the number of features is 
excessive

Interpolate feature location

• Provides the yi
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Warp each image to intermediate location

Two different warps: 
Same target location, different 

source location
i.e. the yi are the same 

(intermediate locations), the xi

are different (source feature 
locations)

Note: the xi do not change 
along the animation, but the yi

are different for each 
intermediate image
Here we show t=0.5

(the yi are in the middle)

Warp each image to intermediate location

Interpolate colors linearly

Interpolation weight are a 
function of time: 

C=
(1-t)f0t(I0)+t f1t(I1)

Uniform morphing

6.088 Digital and Computational Photography 
6.882 Advanced Computational Photography

Panoramas

Frédo Durand
MIT - EECS

Lots of slides stolen from Alyosha Efros, 
who stole them from Steve Seitz and Rick Szeliski

Why Mosaic?
• Are you getting the whole picture?

– Compact Camera FOV = 50 x 35°

Slide from Brown & Lowe
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Why Mosaic?
• Are you getting the whole picture?

– Compact Camera FOV = 50 x 35°

– Human FOV                = 200 x 135°

Slide from Brown & Lowe

Why Mosaic?
• Are you getting the whole picture?

– Compact Camera FOV = 50 x 35°

– Human FOV                = 200 x 135°

– Panoramic Mosaic        = 360 x 180°

Slide from Brown & Lowe

Mosaics: stitching images together

virtual wide-angle camera

How to do it?
• Basic Procedure

– Take a sequence of images from the same position
• Rotate the camera about its optical center

– Compute transformation between second image and 
first

– Transform the second image to overlap with the first

– Blend the two together to create a mosaic

– If there are more images, repeat

• …but wait, why should this work at all?

– What about the 3D geometry of the scene?

– Why aren’t we using it?

A pencil of rays contains all views

real
camera

synthetic
camera

Can generate any synthetic camera view
as long as it has the same center of projection!

Aligning images: translation

left on top right on top

Translations are not enough to align the images
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Image reprojection

mosaic PP

• The mosaic has a natural interpretation in 3D
– The images are reprojected onto a common plane
– The mosaic is formed on this plane
– Mosaic is a synthetic wide-angle camera

Image reprojection
• Basic question

– How to relate 2 images from same camera center?
• how to map a pixel from PP1 to PP2

PP2

• Answer
Cast a ray through each pixel in PP1

PP1

– Cast a ray through each pixel in PP1

– Draw the pixel where that ray intersects PP2

But don’t we need to know the geometry
of the two planes in respect to the eye?

Observation:
Rather than thinking of this as a 3D reprojection, 

think of it as a 2D image warp from one image to another

Back to Image Warping

Translation Affine Perspective

Which t-form is the right one for warping PP1 into PP2?
e.g. translation, Euclidean, affine, projective

2 unknowns 6 unknowns 8 unknowns

Homography
• Projective – mapping between any two PPs with 

the same center of projection

– rectangle should map to arbitrary quadrilateral 

– parallel lines aren’t

– but must preserve straight lines
PP2

– same as: project, rotate, reproject 

• called Homography

PP2

PP1





































1
y
x

***
***
***

w
wy'
wx'

H pp’
To apply a homography H

• Compute     p’ = Hp   (regular matrix multiply)

• Convert p’ from homogeneous to  image 
coordinates

Panoramas

1. Pick one image (red)

2. Warp the other images towards it (usually, one by 
one)

3. blend

Full Panoramas
• What if you want a 360 field of view?

mosaic Projection Cylinder
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– Map 3D point (X,Y,Z) onto cylinder

Cylindrical projection

X
Y

Z – Convert to cylindrical coordinates

Convert to cylindrical image coordinatesunit cylinder

unwrapped cylinder

cylindrical image

– Convert to cylindrical image coordinates

Full-view (360°) panoramas

Blending the mosaic

An example of image compositing:
the art (and sometime science) of 

combining images together…

Multi-band Blending

Multi-band Blending
• Burt & Adelson 1983

– Blend frequency bands over range  

References Links

Links to Fredo

New upcoming textbook

Eduard Gröller
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Further Examples

Input

Output

p
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Texture Transfer

• Take the texture from one 
object and “paint” it onto 
another object
– This requires separating 

texture and shape

– That’s HARD, but we can 
cheat 

– Assume we can capture shape 
by boundary and rough 
shading

•
Then, just add another constraint when sampling: Then, just add another constraint when sampling: 
similarity to underlying image at that spotsimilarity to underlying image at that spot

++ ==

parmesan

++ ==
rice

++ ==
==++

Image analogies
Image Analogies

A A’A A’

B B’
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Artistic Filters

A A’

B B’

Texture-by-numbers

A A’A A

B B’

Summary

 Modern algorithms enable qualitatively new imaging techniques

 Some of these algorithms will be integrated in cameras soon

 Former times: physical capturing of light at a time 

 Today/future: capturing the moment  (M. Cohen)

[Deussen et al.]

Interesting Links

http://people.csail.mit.edu/fredo/)

http://web.media.mit.edu/~raskar/photo/

http://computationalphotography.org/

http://en.wikipedia.org/wiki/Computational_photography

Eduard Gröller


