Computational Photography

Eduard Groller

Most of material and slides courtesy of
Fredo Durand (http://people.csail.mit.edu/fredo/) and
Oliver Deussen (http:/graphics.uni-konstanz.de/mitarbeiter/deussen.php)

What is computational photography e

» Convergence of image processing, computer vision,
computer graphics and photography
« Digital photography:
— Simply replaces traditional sensors and recording by
digital technology
— Involves only simple image processing
» Computational photography

— More elaborate image manipulation, more
computation

— New types of media (panorama, 3D, etc.)
— Camera design that take computation into account

Novel Nlumination

('rnnilnt.lt'l('md| Photography

Novel Cameras

[Raskar and
Tumblin]

http://web.media.mit.edu/~raskar/photo/

= Generalized Optics
= Generalized Sensor

= Processing, and
s Generalized lllumination

#

Computational Photography — Taxonomy (1)

= Computational illumination
+ Flash/no-flash imaging
¢ Multi-flash imaging
+ Different exposures imaging
¢ Image-based Relighting
# Other uses of structured illumination

= Computational optics
+ Coded aperture imaging
¢ Coded exposure imaging
# Light field photography
¢ Catadioptric imaging
+ Wavefront coding
+ Compressive imaging

Eduard Groller ﬁ

Computational Photography — Taxonomy (2)

s Computational processing
+ Panorama mosaicing
+ Matte extraction
+ Digital photomontage
¢ High dynamic range imaging
+ All-focus imaging

= Computational sensors
¢ Artificial retinas
¢ High dynamic range sensors
¢+ Retinex sensors

Eduard Groller

Tone mapping

» One of your assignments!




Defocus Matting

« With Morgan McGuire, Wojciech Matusik,
Hanspeter Pfister, John “Spike” Hughes

* Data-rich: use 3 streams with different focus

Nyt T

Motion magnification csa

Video

Syllabus
Viewtinder
* Image formation e Pentaprium
fies— J\"“m’nlm

minme

« Color and color perception

= Intemal lens
ts

S Light from subject

* Demosaicing \

» High Dynamic
Range Imaging

* Bilateral
filtering and
HDR display

* Matting

Syllabus csa

» Gradient image manipulation

Syllabus

* Non-parametric
image synthesis,
inpainting, analogies
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original

Syllabus

» Tampering detection
and higher-order
statistics

Syllabus

* Panoramic imaging

* Spatial warping operations

€sAl

Syllabus csar

e Active flash methods
e Lens technology
« Depth and defocus

No-flash

i our
. i| == result

Syllabus

€sAl

e Future cameras
« Plenoptic function and light fields

I

[N \/odern cameras use image stacks (1) || [N \/odern cameras use image stacks (1) ||

[Deussen et al.]

[Deussen et al.]




[Deussen et al.]

N \\odern cameras use image stacks (1) ||

[Deussen et al.]

I \/odern cameras use image stacks (1) . I \/odern cameras use image stacks (1)

[Deussen et al.]

Modern cameras use image stacks (2) ﬁl:_-ﬁm
[Deussen et al.]

Modern cameras use image stacks (2) ﬁl:_-ﬁm
[Deussen et al.]
] F -

» The web: a completely new source of image information

[Deussen et al.]




[Deussen et al.]

[Deussen-et=al:]

Deussen et al.]

[Deussen et al.]
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Scene Completion Using Millions of Photographs
Hays and Efros, Siggraph 2007

Original ; Input

S e
el =
=t

[Debevec, Raskar, Tumblin]

Flash/ No Flash Photography

[Deussen et al:

Beautification

[Deussen et al.]

[Deussen et al.]

Beautification

Beautification

[Deussen et al.]




Beautification

[Deussen et al.]

Data-Driven Enhancement
of Facial Attractiveness

Tommer Leyvand, Daniel Cohen-Or, Gideon Dror and Dani Lischinski

[Debevec, Raskar, Tumblin]

Gigapixei images

[Deussen et al.]

Displaying Gigapixel — Tiled Displays
» Form a large display by combining several smaller ones

» Reverse process to stitching large images from smaller ones

»  Two types:
Monitor walls (typically LCD)
Multi-projector back-projection systems

100 megapixel wall, Univ. lllinois

==d) Megapixel wall, Univ. Konstanz

[Deussen et al.]

-

Tiled Monitor Walls

» Advantages » Problems

Relatively cheap Clearly visible borders (mullions)

Compensate for borders
No multi-user stereo

Scalable in size
No calibration

HiPerSpace OptlPortal (UC San Diego): 220 million pixels (55 screens)

[Deussen et al.]

Capturing Gigapixel Images

[Deussen et al.]




Example: University of Konstanz / MSR .ﬁ%

Created from about 800 8 MegaPixel Images

[Deussen et al.]

Example: University of Konstanz / MSR .ﬁ%

[Deussen et al.]

Example: University of Konstanz / MSR

150 degrees

“Normal” perspective projections cause distortions.

[Deussen et al.]

Example: University of Konstanz / MSR

100X variation in Radiance

High Dynamic Range

[Deussen et al.]

Deep Photo

» Can we change an normal outdoor photography after the shot?

> Yes, especially when depth information is available

[Deussen et al.]

Our Approach

Camara with GPS

A

Input Photo Depth Map

Virtual Earth data

[Deussen et al.]




Applications

» Image Enhancement
» Remove haze

Original Dehazed Relighted
-

» Novel View synthesis
» Expanding the FOV
» Change view point

» Information visualization L
Original Expanded FOV

» Integration of GIS data i_ n

Annotated

» Relighting

Photography - Basics

[Deussen et al.]

« Focal length (in mm)

— Determines the field of view.

« Lens and viewpoint determine perspective W'qe angle (<30mm) to telephoto (>100mm)
¢ Focusing distance

+ Aperture and shutter speed determine exposure — Which distance in the scene is sharp

» Aperture and other effects determine depth of field « Depth of field
« Film or sensor record image — Given tolerance, zone around the focus distance that is sharp
- e * Aperture (in f number)
— Ratio of used diameter and focali iens.
Number under the divider =» small number = large aperture
(e.g. f/2.8 is a large aperture, f/16 is a small aperture)
 Shutter speed (in fraction of a second)
— Reciprocity relates shutter speed and aperture
 Sensitivity (in 1SO)
— Linear effect on exposure
— 100 ISO is for bright scenes, 1SO 1600 is for dark scenes

Overview

Quantities Focal length :
<30mm: wide angle i
focal _ 50mm: standard :
length focus distance >100mm telephoto _ ;"
D Affected by sensor size * ~ |7 " 5omm|
| (crop factor) - y
Sensor | = ...I.:.I . -
size k) focal length - .‘ ] _
: o «—> —
| |
lens -
I VIEW




Exposure

« Aperture (f number)

— Expressed as ratio between focal length and aperture diameter:
diameter = f / <f number>

— /2.0, /2.8, /4.0, /5.6, /8.0, f/11, f/16 (factor of sqrt (2))

— Small f number means large aperture

— Main effect: depth of field

— A good standard lens has max aperture /1.8.

A cheap zoom has max aperture f/3.5

« Shutter speed

— In fraction of a second

— 1/30, 1/60, 1/125, 1/250, 1/500 (factor of 2)

— Main effect: motion blur

— A human can usually hand-hold up to 1/f seconds, where f is focal length
* Sensitivity

— Gain applied to sensor

— In IS0, bigger number, more sensitive (100, 200, 400, 800, 1600)

— Main effect: sensor noise
Reciprocity between these three numbers:

for a given exposure, one has two degrees of freedom.

Depth of field

e The bigger the aperture (small f number),
the shallower the DoF

— Just think Gaussian blur: bigger kernel = more blurry

— This is the advantage of lenses with large maximal aperture:
they can blur the background more

* The closer the focus, the smaller the DoF
« Focal length has a more complex effect on DoF

— Distant background more blurry with telephoto

— Near the focus plane, depth of field only depends on image size
» Hyperfocal distance:

— Closest focusing distance for which the depth of field includes

infinity
— The largest depth of field one can achieve.
— Depends on aperture.

What is an image? ,
» We can think of an image a$ a function, f,
e from R2to R:
—f(x, y) gives the intensity at position (x,y)
— Realistically, we expect the image only to be
defined over a rectangle, with a finite range:
« f: [a,b]x[c,d] = [0,1]
» A color image is just three functions pasted
together. We can write this as a “vector-

valued” function: r(x,y)

f(xy)=|a(xy)
b(x,y)

Images as functions

Image Processing

 image filtering: change range of image

fp\/;gﬁimwyp\J

X

» image warping: change domain of image

f + 909 = f(h(¥),
N —h— NJ

Image Processing

 image filtering: change range of image

-+ 90 = h(f(x)

r i
¢ el TR

» image warping: change domain of image
* 9(x) =f(h(x))

CI

sy
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Point Processing Negative

» The simplest kind of range transformations
are these independent of position x,y:

* 9=t

» This is called point processing.

* Important: every pixel for himself — spatial
information completely lost!

_ Image Histograms
Contrast Stretching | | e g g

[ o L

I. .| L L
.I Cumulative Histograms

| =
Si .
& |

Histogram Equalization Image Filtering — Change Range of Image

= Only range based: histogram manipulation

m Take only spatial neighborhood (domain) into
account — averaging, median, Gaussian

= Domain + Range considered: Bilateral filtering
(edge-preserving smoothing)

0 e . s Spntnna — '




Bilateral filter

¢ Tomasi and Manduci 1998
http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.
pdf
¢ Related to
— SUSAN filter
[Smith and Brady 95]
http://citeseer.ist.psu.edu/smith95susan.html

— Digital-TV [Chan, Osher and Chen 2001]
http://citeseer.ist.psu.edu/chan01digital.html

— sigma filter
http://www.geogr.ku.dk/CHIPS/Manual/f187.htm

Start with Gaussian filtering

» Here, input is a step function + noise

input

Gaussian filter as weighted average “cu

* Weight of & depends on distance to x

JX)= X f(x) 1(£)

3
output — > input

The problem of edges

 Here, I(§) “pollutes” our estimate J(x)
* Itis too different

JX)= 2 f(x9)

4
output —_

169

input

Principle of Bilateral filtering

[Tomasi and Manduchi 1998]
 Penalty g on the intensity difference

J(X) =g 2 T 91&-100) 1(8)

3
| output — > input |

Bilateral filtering

[Tomasi and Manduchi 1998]
 Spatial Gaussian f

J(x):k(lx)gf(x,f)g(l(é)—l(x» 1(&)

| output — > input |

12



Bilateral filtering

[Tomasi and Manduchi 1998]
 Spatial Gaussian f
» Gaussian g on the intensity difference

J(X) =155 2 £ (2. 91 () = 106N

4
| output ﬂ

Normalization factor

[Tomasi and Manduchi 1998]

< k(= D f(x,&) 9(1(E)-1(x))

J(X) = 2 F(x8) 9U1O-100) 1)

¢

Other view

« The bilateral filter uses the 3D distance

6.088 Digital and Computational Photography
6.882 Advanced Computational Photography

Dynamic Range and Contrast

Frédo Durand
MIT - EECS

Light, exposure and dynamic range

« Exposure: how bright is the scene overall
« Dynamic range: contrast in the scene

e Bottom-line problem: illumination level and
contrast are not the same for a photo and for the
real scene.

Example:

* Photo with a
Canon G3

» Jovan is too dark
 Sky is too bright

13



Real world dynamic range

 Eye can adapt from ~ 106 to 10° cd/m?
» Often1 : 100,000 in a scene

106 108
Realworld | | | | | | | 0 | @ oo
|

High dynamic range

spotmeter

The world is high dynamic range

» Slide from Paul Debevec

l' 25,000

}'1;.‘_ - 400,000

2.,000,000,000

Problem 2: Picture dynamic range:.

» Typically 1:20or 1:50
— Black . is ~ 50x darker than white

Problem 1

* The range of illumination levels that we encounter
is 10 to 12 orders of magnitudes

« Negatives/sensors can record 2 to 3 orders of

e Max 1:500 magnitude
106 108 » How do we center this window? Exposure problem.
Real world | | | | | | | | | | | | | 10_6 Real scenes 106
| L
[ ]
[ ]
106 106 10° 103
Pictre | | | L ——'
Low contrast Negative/sensor
Contrast reduction Limited dynamic range can be good!“«x

¢ Match limited contrast of the medium
* Preserve details

106 High dynamic range 108
Realworld | | | | [ " | | " o

106 106

Picture | | | [ T R Y R

Low contrast

W. Eugene Smith photo of Albert Schweitzer

5 days to print!

Things can be related because the intensity is more similar
Balance, composition

14



Multiple exposure photography “eu

 Sequentially measure all segments of the range
10® High dynamic range 106
| |

Realworld | | | | | [ I L |

10® 106

Picture | | | [ R I O R

Photoshop curves

* Specify an arbitrary remapping curve
 Especially useful for black and white

Low contrast
Ll

From Photography by London et al.

Sunnybrook HDR display

+ Use Bright Source + Two 8-bit Modulators
— Transmission multiplies together
Over 10,000:1 dynamic range possible

Gradient Manipulation

« Human visual system is very sensitive to gradient
» Gradient encode edges and local contrast quite well

» Do your editing in the gradient domain
» Reconstruct image from gradient r

« Various instances of this idea, 1I’ll mostly follow Perez et al. Siggraph 2003
http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Slide from the 2005 SiggraEh course on HDR ﬁ
Today: Gradient manipulation Problems with direct cloning
Idea:

From Perez et al. 2003

15



Solution: clone gradient

E w senmbess cloning

source shbestinations

Gradients and grayscale images

» Grayscale image: scalars
 Gradient: 2D vectors
» Overcomplete!
* What’s up with this?
» Not all vector fields are the gradient of an image!
« Only if they are curl-free (a.k.a. conservative)
— But it does not matter for us

Seamless Poisson cloning Discrete 1D example: minimization.
» Given vector field v (pasted gradient), find the value « Copy ¢ 6
of f in unknown region that optimizep%s i 5
. W’(/z .”eq 3 ;
. L . . 0117' ”alio 2
min [ [V =V with flag = o "Chtrel? :
r e “ngy, 0 "
“ong 01234567 01234567
Pasted gradient  pask $ f
A ko, * Min ((f-f)-1)?
oY a * Min((ff)-(D)?
anmx N a0 . « Min ((fF)-22  With
' Figure 10 Guided In:nwhllun notations. Unknown uEtai:ulfground ' Min ((fs'f4)'('1))2 fl:6
o vt 1 i g o ok ¢ it 11 3 * Min ((fe-fg)-(-1))> 67
1D example: minimization 1D example: big quadratic
« Copy ¢ 6 « Copy ¢ 6
5 5 5 5
4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1
001234567 O01234567 001234567 O01234567
* Min ((f,-6)-1)? ==> f,2+49-14f, e Min (f,2+49-14f,
e Min ((f;-f,)-(-1))? ==> f2+f,2+1-2f,f, +2f;-2f, + f2+£,2+1-21,f, +2f,-2f,
* Min ((f,-f5)-2)? ==> f2+f;2+4-2f,f, -4f ,+41; + £, 2+f,2+44-21,f, -4f +4f,
e Min ((fs-f,)-(-1))? ==> f{2+f,2+1-2ff, +2f;-2f, + f2+f,2+1-2f.f, +2f;-2f,
o Min ((1-f5)-(-1))? ==> f2+4-4f, + f2+4-41,)

Denote it Q

16



1D example: derivatives 1D example: set derivatives to zero.
« Copy ¢ 6 « Copy ¢ 6
5 5 5 5
4 4 4 4
3 3 3 3
2 2 2 2
1 1 29 99 1 1 29 99
0 01234567 0 012345867 0 01234567 0 012345867
Min (F,2+49-14f, 37?; =2fy+2fs —2fs— 16 R =2f+2f—2f;— 16
+ fo24+,2+1-2ff, +2f;-2f, 4Q _op _of 19499 4
+ £, 24,244-20,, <414, 3—2 =2f3—2fo+2+2f3 -2f;+4 12 2;‘ 2;”;; 2;4 +2
B ~ =220 — A+ 2f4 215 —
+f5§+f42+1 2hf, +2f,-2f, 99 of, of, 44 2f, - 2fs 2 deQ
Denote it+Qfs +4-4f;) 4 =2 -2fat2+2f5-4 L e 0 o P 6
eno B=2fs—2fa+2+2fs—4 2 4 -2 0 B | -6
s - 0 -2 4 -2 F 7
=>\V1o0o 0o —2 4 fs 2
1D example 1D example: remarks

« Copy :| .., to

e Matrix is symmetric
« Everything is a multiple of 2
01234567 01234567 — because square and derivative of square

O P N W B~ 0O
oORr N WA OO

4 2 0 0 I3 16 P 5 » Matrix is a convolution (kernel -2 4 -2)
-2 4 -2 0 fs | | -6 fi 4 e Matrix is independent of gradient field. Only RHS is
0 -2 4 =2 7 e =15 . o L
0 0 -2 4 f: 9 2 ) Matrix is a second derivative
Recap Result (eye candy)

» Find image whose gradient best approximates the
input gradient
— least square Minimization
« Discrete case: turns into linear equation
— Set derivatives to zero
— Derivatives of quadratic ==> linear
« Continuous: turns into Euler-Lagrange form
— Af=divv
* When gradient is null, membrane interpolation
— Linear interpolation in 1D

cloning seamlbess choning

seurce/dedination




€sAl

Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-
lifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

€sAl

s destinations choning

seambess cloning

Seamless Image Stitching in the Gradient Domaina:

» Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss
http://www.cs.huji.ac.il/~alevin/papers/eccv04-blending.pdf
http://eprints.pascal-network.org/archive/00001062/01/tips05-blending.pdf

» Various strategies (optimal cut, feathering)

|

Tt irmage 14

eyt image £y Sttchmg result

Fig. 1. Tnsage stitching. O fhe beft are the mput mmages. o is fhe overlap region. On top right is 2
sitigle pasting of the ipu iimsges. On the bottom il is the result of the GISTI algorithm

Poisson Matting

€sAl

» Sun et al. Siggraph 2004

« Assume gradient of F & B is negligible

 Plus various image-editing tools to refine matte
I=aF+(1-a)B
VIi=(F-BVo+oVF+(l—-o)VB

Figure |: Pulls of smane from a congles seene. From left 10 ight.  conples

e foe exiatinng matting teckshjues where the color backgsomd
s cousplex. s bagh quality muatte penerated by Peswon mating. a composite e with the extracted koals el » constant-colos backpround. s a compesisd
uisge it the extracted hunals aeed s differein backgonel

Poisson-ish mesh editing

« http://portal.acm.org/citation.cfm?i /.

d=1057432.1057456

*  http://www.cad.zju.edu.cn/home/xu
dong/Projects/mesh _editing/main.h
tm

¢ http://people.csail.mit.edu/sumner/r
esearch/deftransfer/

Faper | An b mithical createre. Lelt mesh cvespences
e mverying and deformanon (S arm). Right. fisal ediing sesul

1 e e e o

e, defirmations
changes o well s

e tarpet mcsh,
ame! prscs. Thoth gr

Inpainting

€sAl

* More elaborate energy functional/PDEs

¢ http://www-mount.ee.umn.edu/~quille/inpainting.htm

18
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6.098 Digital and Computational Photography
6.882 Advanced Computational Photography

Matting & Compositing

Frédo Durand
MIT - EECS

Motivation: compositing

€sAl

Combining multiple images. Typically, paste a
foreground object onto a new background

» Movie special effect
* Multi-pass CG
e Combining CG & film
« Photo retouching
— Change background
— Fake depth of field
— Page layout: extract objects, magazine covers

Photo editing

€sAl

« Edit the background independently from foreground

Photo editing

 Edit the background independently from foreground

Technical Issues

€sAl

« Compositing
— How exactly do we handle transparency?
» Smart selection
— Facilitate the selection of an object
» Matte extraction
— Resolve sub-pixel accuracy, estimate transparency
e Smart pasting
— Don't be smart with copy, be smart with paste
— See gradient manipulation
 Extension to video
— Where life is always harder

19



Alpha

« o 1 means opaque, 0 means transparent
e 32-bitimages: R, G, B, a

F

Compositing

From the Art & Science of Digital Compositini

* Non premultiplied version:
Given the foreground color F=(Rg, G, Bg), the
background color (Rg, Gg, Bg) and a for each pixel

* The over operation is: C=a F+(1-a)B
— (in the premultiplied case, omit the first o)

B

o

Matting problem

* Inverse problem:
Assume an image is the over composite of a
foreground and a background

» Given an image color C, find F, B and a so that
C=a F+(1-a)B

Matting ambiguity

€sAl

¢ C=a F+(1-a)B
* How many unknowns, how many equations?

Matting ambiguity

+ C=a F+(1-0)B
» 7 unknowns: a and triplets for F and B
» 3equations, one per color channel

Matting ambiguity

€sAl

e C=a F+(1-a)B

» 7 unknowns: a and triplets for F and B

» 3equations, one per color channel

« With known background (e.g. blue/green screen):
4 unknowns, 3 equations

B

20



Questions?

Questions?

From Cinefex i comwres o

Natural matting

[Ruzon & Tomasi 2000, Chuang et al. 2001]
¢ Given an input image with
arbitrary background
e The user specifies a coarse Trimap
(known Foreground, known background
and unknown region)
* Goal: Estimate F, B, alpha in the
unknown region
— We don’t care about B, but it’s a
byproduct/unkown

images from Chuang et al

Now, what tool do we know to estimate
something, taking into account all sorts of
known probabilities?

Bayes theorem for matting

P(xly) = P(ylx) P(x) / P(y)

The parameters Likelihood Constant w.r.t.
you want to parameters X.

ESWHg{eyou observe

function
Prior probability

Matting and Bayes

* What do we observe?

P(xly) = P(ylx) P(x) / P(y)

The parameters Likelihood Constant w.r.t.
you want to parameters X.

; function
es\'mﬁ-{Fyou observe Prior probability

Matting and Bayes

¢ What do we observe?
— Color C at a pixel

P(X|C) = P(C|x) P(x) / P(C)

The parameters L!kelihood Constant w.r.t.
you w_ant to function parameters X.
eseg%tteyou observe Prior probability

21



Matting and Bayes

* What do we observe: Color C
* What are we looking for?

P(x|C) = P(C|x) P(x) / P(C)

Likelihood
function
Prior probability

parameters X.

The parameters you
want to estimate

| Constant w.r.t.

Color you observe

Matting and Bayes

* What do we observe: Color C
* What are we looking for: F, B, a

P(F,B,a|C) = P(C|F,B,a) P(F,B,a) / P(C)

t
Foreground
! Lo Constant w.r.t.
background, ‘ L|kel|hood parameters x.
transparency you function

want to estimate Prior probability

Color you observe

Matting and Bayes

* What do we observe: Color C
« What are we looking for: F, B, a —1
« Likelihood probability?

— Given F, B and Alpha, probability that we observe C

P(F.B,0|C) = P(C|F,B,a) P(F,B,a) / P(C)

Foreground
! - Constant w.r.t.
background, Likelihood parameters x.
transparency you function

want to estimate Prior probability

Color you observe

Matting and Bayes

* What do we observe: Color C
« What are we looking for: F, B, a —1
* Likelihood probability?

— Given F, B and Alpha, probability that we observe C

— If measurements are perfect,

non-zero only if C=a F+(1-0)B
— But assume Gaussian noise with variance o

P(F.B,0|C) = P(C|F,B,a) P(F,B,a) / P(C)

Foreground
! - Constant w.r.t.
background, Likelihood parameters x.
transparency you function

want to estimate Prior probability

Color you observe

Matting and Bayes

¢ What do we observe: Color C
« What are we looking for: F, B, a ‘

* Likelihood probability: Compositing equation +
Gaussian noise with variance o
 Prior probability:
— How likely is the foreground to have color F? the
background to have color B? transparency to be o.?

P(F.B,a|C) = P(C|F,B,a) P(F,B,a) / P(C)

Foreground,

background, Likelihood
transparency you function
want to estimate

Constant w.r.t.
parameters X.

Color you observe Prior probability

Matting and Bayes

¢ What do we observe: Color C
« What are we looking for: F, B, a ‘

* Likelihood probability: Compositing equation +
Gaussian noise with variance o

 Prior probability:
Build a probability distribution from the known regions
— This is the heart of Bayesian matting

P(F.B,a|C) = P(C|F,B,a) P(F,B,a) / P(C)

Foreground,

background, Likelihood
transparency you function
want to estimate

Constant w.r.t.
parameters X.

Color you observe Prior probability

22



Questions?

€sAl

From

i Chuang
etal
2001

€sAl

6.098 Digital and Computational Photography
6.882 Advanced Computational Photography

Image Warping and Morphing

Frédo Durand
Bill Freeman
MIT - EECS

« D'Arcy Thompson
http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html
http://en.wikipedia.org/wiki/D'Arcy Thompson

« Importance of shape and structure in
evolution

Skulls of & hurnan, a chirapanzes and a baboon
and transformations between thern

Morphing

* Input: two images I, and I

v
i- 8
» User specifies sparse correspondences on the images
— Pairs of vectors {(P%, PN))}

typl

(9

Morphing

 For each intermediate frame I,
— Interpolate feature locations P4= (1- t) P + t P,
— Perform two warps: one for |, one for I,
« Deduce a dense warp field from the pairs of features
« Warp the pixels
— Linearly interpolate the two warped images
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Image Warping — parametric

» Move control points to specify a spline warp
« Spline produces a smooth vector field

Warp specification - dense

Slide Alyosha Efros

* How can we specify the warp?

Specify corresponding spline control points
« interpolate to a complete warping function

But we want to specify only a few points, not a grid

Slide Alyosha Efros

Warp specification - sparse

e How can we specify the warp?

Specify corresponding points
< interpolate to a complete warping function
¢ How do we do it?

,_;4:-_—,' R T

How do we go from feature points to pixels?

Warp as interpolation

Slide Alyosha Efros

* We are looking for a warping field
— A function that given a 2D point, returns a warped 2D
point
» We have a sparse number of correspondences
— These specify values of the warping field
 This is an interpolation problem
— Given sparse data, find smooth function

Interpolation in 1D

* We are looking for a function f
We have N data points: x;, y;
— Scattered: spacing between x; is non-uniform
* We want f so that
— For each i, f(x;)=y;
— fis smooth
» Depending on notion of smoothness, different f

Radial Basis Functions (RBF)

 Place a smooth kernel R JK
centered on each data point x;

e f(2) =2 o; R(z, x)
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Radial Basis Functions (RBF)

e Place a smooth kernel R k
centered on each data point x;
e f(2)=2Z o; R(z, x)

» Find weights a; to make sure we interpolate the data
for each i, f(x;)=y;

Kernel

» Many choices
* e.g. inverse multiquadric

» where c controls falloff
« Lazy way: set ¢ to an arbitrary constant (pset 4)

» Smarter way: c is different for each kernel. For each
X;, set ¢ as the squared distance to the closest other x;

Variations of RBF

« Lots of possible kernels
— Gaussians e/20
— Thin-plate splines r2 log r
» Sometimes add a global polynomial term

Input images

Feature correspondences

A DL

» The feature locations will be our x;

* Yes, in this example, the number of features is
excessive

Interpolate feature location

» Provides they;
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Warp each image to intermediate location e

Two different warps:
Same target location, different
source location
i.e. the y, are the same
(intermediate locations), the x;
are different (source feature
locations)

Note: the x; do not change
along the animation, but the y;
are different for each
intermediate image
Here we show t=0.5
(the y, are in the middle)

Warp each image to intermediate location e

Interpolate colors linearly

Interpolation weight are a
function of time:

C=
(1-H)f o)+t (1)

Uniform morphing

Figure 4. Uniform metamorphosis

€sAl

6.088 Digital and Computational Photography
6.882 Advanced Computational Photography

Panoramas

Frédo Durand
MIT - EECS

Lots of slides stolen from Alyosha Efros,
who stole them from Steve Seitz and Rick Szeliski

Why Mosaic?

« Are you getting the whole picture?
— Compact Camera FOV =50 x 35°

Slide from Brown & Lowe
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Why Mosaic?

» Are you getting the whole picture?
— Compact Camera FOV =50 x 35°
=200 x 135°

— Human FOV

Slide from Brown & Lowe

Why Mosaic?

* Are you getting the whole picture?
— Compact Camera FOV =50 x 35°
— Human FOV
— Panoramic Mosaic

=200 x 135°
=360 x 180°

Slide from Brown & Lowe

Mosaics: stitching images togethet.

”

virtual wide-angle camera

How to do it?

« Basic Procedure
— Take a sequence of images from the same position
« Rotate the camera about its optical center

— Compute transformation between second image and
first

— Transform the second image to overlap with the first
— Blend the two together to create a mosaic
— If there are more images, repeat
« ...but wait, why should this work at all?
— What about the 3D geometry of the scene?
— Why aren’t we using it?

A pencil of rays contains all views..

real synthetic
camera camera

Can generate any synthetic camera view
as long as it has the same center of projection!

Aligning images: translation

- —-]

leftontop

Translations are not enough to align the images
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Image reprojection

\ mosaic PP
» The mosaic has a natural interpretation in 3D
— The images are reprojected onto a common plane
— The mosaic is formed on this plane
— Mosaic is a synthetic wide-angle camera

Image reprojection

* Basic question

— How to relate 2 images from same camera center?
« how to map a pixel from PP1 to PP2

e Answer
— Cast a ray through each pixel in PP1
— Draw the pixel where that ray intersects P

But don’t we need to know the geometry
of the two planes in respect to the eye? \7/

Observation:
Rather than thinking of this as a 3D reprojection,
think of it as a 2D image warp from one image to another

Back to Image Warping

Which t-form is the right one for warping PP1 into PP2?
e.g. translation, Euclidean, affine, projective

Homography

 Projective — mapping between any two PPs with
the same center of projection

— rectangle should map to arbitrary quadrilateral
— parallel lines aren’t
— but must preserve straight lines

Translation Affine Perspective PP2
— same as: project, rotate, reproject
« called Homography
wx' *oxoxIX
wl = x el
w
H H p PP1
To apply a homography H
2 unknowns 6 unknowns 8 unknowns « Compute p’'=Hp (regular matrix multiply)
« Convert p’ from homogeneous to image
coordinates
Panoramas Full Panoramas

1. Pick one image (red)

2. Warp the other images towards it (usually, one by
one)
3. blend

* What if you want a 360° field of view?

A
ST

mosaic Projection Cylinder
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Cylindrical projection

p (X.Y,2)
— Map 3D point (X,Y,Z) onto cylinder
P 5)=_ 1
@9, = 7 (X.Y,2)
— Convert to cylindrical coordinates
(sinb, h,cosh) = (z,7,2)
— Convert to cylindrical image coordinates

Full-view (360°) panoramas

€sAl

unit cylinder
l (@,9) = (0, fh) + (Fc, §e)
L
Gegor 0
unwrapped cylinder \-'I
T % cylindrical image
Blending the mosaic Multi-band Blending

An example of image compositing:
the art (and sometime science) of
combining images together...

Multi-band Blending

e Burt & Adelson 1983
— Blend frequency bands over range o« A

REE SRS

m Links to Fredo
= New upcoming textbook

Eduard Groller
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Further Examples

- Image Replacement through Texture Synth -

Homam [gehy Lucas Pereira
Computer Science Department
Stanford University

exture-Replace (noise, original, mask, target)
original = Blend{Mean(target), original, mask)
noise « Match-Histogram (noise, target)

noise = Composite(noise, original, mask)
analysis-pyr = Make-Pyramid (target)

Loop for several iterations

synthesis-pyr = Make-Pyramid (noise)
Loop for a-band in sub-bands of analysis-pyr
for s-band in sub-bands of synthesis-pyr
s-band = Match-Histogram (s-band, a-band)
noise = Collapse-Pyramid (synthesis-pyr)
noise = Match-Histogram (noise, texture)
noise = Composite(noise, original, mask)

mask

Output
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Texture Transfer

* Take the texture from one
object and “paint” it onto
another object

— This requires separating
texture and shape

— That's HARD, but we can
cheat

— Assume we can capture shape
by boundary and rough

hadi . .
Thens, jaug%gadd another constraint when sampling:
Similarity to underlying image at that spot

parmesan
A% ’
-y k
+ o
ﬁk Jl'“",' '_f’: :
“l‘ e A

Image analogies

¥ HYLI Mbaia Renearcss Lab | Prajects | bnage Asalagies - Mesilla Fireten i
e [@ Yew o fooesis ok e o

& = (T o ey pe—— = 0w Gl

0

people
research

Applications

Image Analogies
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Summary

» Modern algorithms enable qualitatively new imaging techniques
» Some of these algorithms will be integrated in cameras soon

» Former times: physical capturing of light at a time

» Today/future: capturing the moment (M. Cohen)

[Deussen et al.]

= http://people.csail.mit.edu/fredo/)

= http://web.media.mit.edu/~raskar/photo/

= http://computationalphotography.org/

= http://en.wikipedia.org/wiki/Computational_photography

Eduard Groller ﬁ
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