
Texturing

Andreas H. K�onig

March 13, 2000

Enhancing the visual appearance of plain objects by applying de�nitions of

�ne structures to surfaces is called Texturing. Di�erent material properties may

be simulated:

� Color

� Re
ection

� Gloss

� Transparency

� Bumps

The application of textures yields a more natural and realistic appearance of

objects. It also enhances the 3D-impression of objects. The texture gradient

de�nes the amount of deformation of the texture pattern due to the spatial

position in 3D-space. Three properties may be controlled:

� Size

� Shape

� Density

Figure 1 shows examples for these variations.

Figure 1: Texture deformations: Size, shape, and density.

The procedure of applying a texture to an object is called mapping. Two

projection steps are used to de�ne the mapping: texture coordinates (u; v) are

projected into object space coordinates (x0; y0; z0), which are de�ned on the

surface of the object. Finally object space coordinates are mapped to image

space coordinates (x; y). Figure 2 depicts the procedure. Textures usually are

of rectangular shape in texture space. After the mapping transformation, they

have been deformed to non-planar patches, bounded by four curves. Figure 3

1



Figure 2: Texture mapping

Figure 3: Texture space vs. image space

shows an example. The mapping procedure is usually de�ned in the opposite

direction: for each pixel on the image plane, the color values of the according

texture position have to be derived. Let (x; y) = O(u; v) be the mapping de�-

nition for the object surface to the image space (respectively x = Ox(u; v) and

y = Oy(u; v)). The shading in
uence in image space for position (x; y) is de�ned

by S(x; y) = T (u; v), using the texture value of position (u; v) in texture space.

Therefore the inverse mapping S(x; y) = T (O�1(x; y)) has to be found.

1 Parametrization

The parametrizaton O de�nes the projection of the texture onto the object. A

proper de�nition is vital (refer to Figure 4). The de�nition of the parametriza-

tion is discussed using the example of a simple triangle. Mapping parameters

for each vertex of the triangle are de�ned in terms of texture coordinates (u; v).

All points within the area of the triangle can be described by baricentric coor-

dinates: (x; y; z) = a0 � (x0; y0; z0)+a1 � (x1; y1; z1)+a2 � (x2; y2; z2). (a0; a1; a2)

are the baricentric coordiantes. The according texture coordinates (u; v) are

2



Figure 4: De�nition of parametrization

easily derived by (u; v) = a0 � (u0; v0) + a1 � (u1; v1) + a2 � (u2; v2) (also refer to

Figure 5). Arbitrary polygons can be divided into simple triangles for mapping.

Figure 5: Parametrization for a triangle

A mapping for patch-surfaces is realized in a straight forward way by utilizing

the patch parameters for texture coordinates (u; v) (refer to Figure 6).

Figure 6: Parametrization for a patch

2 Types of textures

The most commonly used way of specifying a texture is by the de�nition of

a regular 2D grid storing texture information just like an image bitmap. In

analogy to the pixels of bitmaps, the term texels is used for the elements of such

a texture.

Nevertheless, general texture de�nitions may be one-, two-, or three-dimensional.

3



3 Scanline oriented mapping

scanline oriented rendering methods are calculating images line by line. With

the usage of textures, the inverse mapping function O
�1(scanline) is needed.

If O�1 is not available, the texture itself has to be deal with in a line by line

way. This technique is refered to as texture scanning. I may result in holes

in the calculated image or multiple evaluations of the same image regions. A

better approach is 2-pass Scanning. The mapping transformation is split into

two one-dimensional shear mappings, which makes this method only suitable

for aÆne and perspective transformations.

4 Solid texturing

Three-dimensional textures are usually de�ned as a function T (x; y; z) in ob-

ject space. This approach eliminated the parametrization step, yielding a un-

deformed texture. Nevertheless it is possible to specify the texture in 3D-

parameter space like T (u; v; w).

Solid objects with inner structure of the material (like wood or marble) can

be easily simulated with solid textures. Here is an example for a wood texture

de�nition:
0 � x

2 + y
2
� 1; zarbitrary ! lightbrown

1 � x
2 + y

2
� 2; zarbitrary ! darkbrown

2 � x
2 + y

2
� 3; zarbitrary ! yellow

etc:

Figure 7 shows the in
uence of this texture to an object.

Figure 7: Pyramid coe with solid wood texture

Another approach within solid texturing is called bombing. A number of

spheres with random size and location is de�ning a appearance of the texture

similar to swiss cheese. Figure 8 shows an example.

5 Environment mapping

With this approach, the texture is de�ned an surrounding environment, which

is shrink-wrapped to the object. In a preprocessing step, an environment map

4



Figure 8: Bombing

is de�ned. The desired texture is projected to an surrounding hull of the object.

As the surrounding sphere is much larger as the object to be mapped to, it is

Figure 9: Environment mapping

suÆcient to trace viewing rays from the center of the object to the sphere in

order to determine texture entries. If the texture is de�ned in polar coordinates,

the according texels can be accessed conveniently. For re
ective surfaces, the

intersection point of the re
ected rays with the environment sphere can be used

to determine the texture information. For di�use surfaces the environment

texture map has to be lowpass �ltered beforehand, in order to account for the

scattered light transport of di�use re
ection.

The environment may be shaped like a cube, sphere, or cylinder. The pro-

5



jection step for generating the environment map from a surrounding scene is

di�erent for each type. For the cube the map is generated with a rendering

method taking perspective distortion in to account. Raytracing can be used to

generate the map for the sphere, where just viewing rays are considered, but no

re
ected rays. Figure 10 shows the di�erence.

Figure 10: Environment map generation for cube and cylinder maps

6 Bump mapping

Bump mapping is able to simulate minor imperfections of surfaces. As modeling

would be to resource consuming, the bumps are just simulated by shading the

surface a little di�erently. Figure 11 shows the principle. As the lightness of

Figure 11: Bump mapping

a certain point is depending on the surface normal vector at this spot, bump

mapping manipulates the normal vector. Texture is usually speci�ed as a height

�eld, where the new normals can be derived easily. Figure 12 shows the mapping

procedure.

Please note, that bump mapping does not change the geometry of objects,

but only the way, they are shaded. This means, that the outline of the objects

still are rendered smoothly, as they are.

6.1 Horizon mapping

Horizon mapping tries to simulate real bump in a more sophisticated way than

standard Bump mapping. For each texel eight horizon values are calculated,

which are interpolated before shading. The point of consideration is only in

6



Figure 12: Using height �elds for bump mapping

direct light, if the direction to the light source is higher than the pre-computed

horizon. Figure 13 shows a sketch of the application of this technique, �gure 14

shows an object rendered with this technique.

Figure 13: Horizon mapping

7 Texture anti-aliasing

Whenever textures are applied to objects, aliasing artifacts appear. Due to the

deformation in terms of size, Moire-patterns or pixelization artifacts will show

up. Figure 15 shows one of the problematic regions when projecting to spheres.

The reason for the e�ects of aliasing is to be found in the mapping process.

If the projection of a image-space pixel covers more than one texel in texture

space, it is not an appropriate strategy to chose just one of the covered texels

for color evaluation. A better way to do it would be to user a weighted average

of the covered texels. Figure 16 depicts the mapping situation.

This averaging can either be done while texture evaluation (direct convolu-

tion) or in a preprocessing step (pre�ltering).

7



Figure 14: Two cylinders rendered with horizon mapping (right hand side) and

without (left hand side)

7.1 Direct convolution

Due to the limited time constrains while rendering, just approximations of the

projected pixels are used. Simple shapes like rectangles of ellipsoids are evalu-

ated for generating the average of covered texels. Figure 17 gives examples.

This approach may be computationally expensive, yet it yields nice texture

qualities.

7.2 Mip-Mapping

A more eÆcient method is the pre�ltering approach Mip-Mapping. In a prepro-

cessing step di�erent resolutions of the texture are precalculated, each reduced

version being half the size. The coarsest representation features a single texel.

Figure 18 shows the reduction process.

The pre�ltered textures can be eÆciently stored using an scheme, which

separates the RGB channels, shown in Figure 19.

In order to map the pre�ltered texture to an object, the level of the Mip-

Map D to be used has to be determined �rst. The maximum of the projected

diagonals is used to calculate this level: D = ld(max(jd1j; jd2j)). Usually D

will not be a natural number, therefore it has to be interpolated between the

according smaller and larger maps:

colorofpixel = (D1 �D) �W0 + (D�D0) �W1 = (D1 �D) � (W0 �W1) +W1

whereW0 is the value from map D0 = trunc(D) andW1 from map D1 = D0+1,

derived by linear interpolation (rfer to Figure 20.

If the original resolution is too small (D < 0), the texture has to be enlarged

(upsampling) by interpolating the �nest resolution map. Better quality cannot

8



Figure 15: Very �ne structures at the pole of the sphere will yield artifacts

be achieved, as the texture is not de�ned more accurately (refer to Figure 21):

T (u+ du; v + dv) = du � dv � T (u+ 1; v + 1) + du � (1� dv) � T (u+ 1; v)+

(1� du) � dv � T (u; v + 1) + (1� du) � (1� dv) � T (u; v)

7.3 Summed area table method

Another pre�ltering method is precaculating and storing the sum of all texels

in the square (0; 0)� (u0; v0) (refer to Figure 22):

S(u0; v0) =
X

u � u0; v � v0T (u; v)

If the sum of a certain rectangular region in texture space in needed, it can be

derived from the precalculated sums with constant e�ort:

sum = S(u+; v+)� S(u�; v+) + S(u�; v�)� S(u+; v�)

Just for memory accesses and additions are necessary to compute the sum.

Figure 23 shows an example.

9



Figure 16: The origin of artifacts is to be found in the mapping procedure. If

more than one texel is covered by the projected pixel, a weighted average of the

texels should be used.

Figure 17: Direct convolution: simple shapes are used to approximate averaging

of the covered area.

10



Figure 18: Mip-Mapping texture downsampling

Figure 19: Mip-Mapping texture storage scheme

11



Figure 20: Mip-Mapping texture level derivation by length of diagonals

Figure 21: Mip-Mapping texture enlargement interpolation

12



Figure 22: Summed area table generation

Figure 23: Summed area table access

13


