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Sampling and Reconstruction
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Overview

n Introduction
n Sampling Theory

nFourier Transform
nConvolution & Convolution Theorem

n Reconstruction
nSampling Theorem
nReconstruction in theory and practice

n Interpolation - Zero Insertion
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Image Data
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Image Storage and Retrieval
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Sampling Problems
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Sampling Theory

n Relationship between Signal and
Samples

n View Image Data as Signals
n Signals can be plotted as intensity vs.

time - spatial domain
n Signals can be represented as sum of

sine waves - frequency domain
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Square Wave Approximation
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Box & Tent
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Square Wave & Scanline
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Fourier Transform

Link between spatial and frequency domain
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Fourier Transform

n Yields complex functions for frequency
domain

n Extends to higher dimensions
n Complex part is phase information -

usually ignored

Alternative: Hartley transform
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Discrete Fourier Transform
For discrete signals (i.e. sets of samples)

N samples: O(N^2) complexity
Fast FT (FFT): O(N log N)
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Base Functions

Dirac Pulse                  Comb Function
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FT of Base Functions

n Impulse function: constant 1, i.e. equal
energy at all frequencies

n Comb function: comb with reciprocal
spacing
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Convolution

n Operation on two functions
n Produces a new function which is a

sliding weigthed average of a function.
The second function provides the
weights.

∫
∞

∞−

−=∗ ''
2

'
1121 )()())(( dxxxfxfxff

16 /49 Eduard Gröller, Thomas Theußl

Convolution - Examples
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Convolution Theorem

The spectrum of the convolution of two
functions is equivalent to the product of the
transforms of both input signals, and vice
versa.
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Example - Low-Pass

Low-pass filtering performed on Mandrill
scanline

Spatial domain: convolution with sinc
function

Frequency domain: cutoff of high
frequencies - multiplication with box filter

Sinc function corresponds to box function and
vice versa!
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Low-Pass in Spatial Domain 1
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Low-Pass in Spatial Domain 2
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Low-Pass in Frequency Domain
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Sampling

The process of sampling is a multiplication
of the signal with a comb function.

The frequency response is convolved with
a transformed comb function.
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Spectrum of a Sampled Signal

24 /49 Eduard Gröller, Thomas Theußl

Reconstruction

Recovering the original function
from a set of samples

n Sampling theorem
n Ideal reconstruction

nSinc function
n Reconstruction in practice
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Definitions

n A function is called band-limited if it
contains no frequencies outside the
interval [-u,u]. u is called the bandwidth
of the function

n The Nyquist frequency of a function is
twice its bandwidth, i.e. w = 2u
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Sampling Theorem

A function f(x) that is

n band-limited and
n sampled above the Nyquist frequency

is completely determined by its samples.
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Sampling at Nyquist Frequency
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Sampling Below Nyquist f
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Ideal Reconstruction

n Replicas in frequency domain must not
overlap

n Multiplying the frequency response with a
box filter of the width of the original
bandwidth restores original

n Amounts to convolution with Sinc
function
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Sinc function

n Infinite in extent
n Ideal reconstruction filter
n FT of box function
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Sinc & Truncated Sinc

32 /49 Eduard Gröller, Thomas Theußl

Reconstruction: Examples

Sampling and reconstruction of the Mandrill
image scanline signal

n with adequate sampling rate
n with inadequate sampling rate
n demonstration of band-limiting

With Sinc and tent reconstruction kernels
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Adequate Sampling Rate
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Adequate Sampling Rate
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Inadequate Sampling Rate
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Inadequate Sampling Rate
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Band-Limiting a Signal
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Band-Limiting a Signal
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Reconstruction in Practice

Problem: which reconstruction kernel
should be used?

n Genuine Sinc function unusable in
practice

n Truncated Sinc often sub-optimal
n Various approximations exist; none is

optimal for all purposes
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Tasks of Reconstruction Filters

n Remove the extraneous replicas of the
frequency response

n Retain the original undistorted frequency
response
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Used Reconstruction Filters

n Nearest neighbour
n Linear interpolation
n Symmetric cubic filters
n Windowed Sinc

More sophisticated ways of truncating
the Sinc function
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Box & Tent Responses
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Windowed Sinc Responses
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Sampling & Reconstruction Errors

n Aliasing: due to overlap of original
frequency response with replicas -
information loss

n Truncation Error: due to use of a finite
reconstruction filter instead of the infinite
Sinc filter

n Non-Sinc error: due to use of a
reconstruction filter that has a shape
different from the Sinc filter
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Interpolation - Zero Insertion

Operates on series of n samples
Takes advantage of DFT properties

n Perform DFT on series
n Append zeros to the sequence
n Perform the inverse DFT
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Zero Insertion - Properties

n Preserves frequency spectrum
n Original signal has to be sampled above

Nyquist frequency
n Values can only be interpolated at evenly

spaced locations
n The whole series must be accessible,

and it is always completey processed

47 /49 Eduard Gröller, Thomas Theußl

Zero Insertion - Original Series
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Zero Insertion - Interpolation
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Sampling and Reconstruction
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