
1

Dithering and Raster Graphics

Graphics devices like monitors or printers are able to handle only a limited number of
colors. In order to display raster images, which contain colors that are not available on
the given device, two methods can be used. One of them is quantization, where from the
available color tables that one is selected which fits best to the color spectrum of the
given image. The other one is dithering which simulates the missing colors by mixing
the existing colors.

1. Dithering

The principle of dithering is demonstrated in Figure 1. In order to simulate tone x on a
raster display the available colors a and b are mixed in an appropriate ratio.

a x b

In order to simulate tone x

100 ⋅
x − a
b − a

% b-Pixel and

100 ⋅
b − x
b − a

% a-Pixel

have to be used.

Figure 1. Simulation of missing colors by mixing the existing colors.

In printing industry we are not restricted to constant size pixels located at regular grid
points. Therefore, in black-and-white printing the point density is equal everywhere and
different gray levels are represented by points with different sizes. In color printing every
primary color is rastered separately and different printing angles ensure unbiased results.

2

1.1.Classification of dithering methods

Dithering methods can be classified into two main categories. One of them is threshold
dithering, where every pixel is compared to a threshold value in order to decide which
existing color should substitute the given pixel color. For example, ordered dithering,
stochastic dithering, and dot diffusion dithering belong to this category. The other
alternative is error diffusion dithering, where the rounding error of every pixel is
propagated to neighboring pixels and compensated there. A typical example of this
category is Floyd-Steinberg dithering.

1.2. Threshold dithering

Using threshold dithering, each pixel value p is compared to a threshold t. If p < t then p
= a, otherwise p = b, where a and b are the available colors. The threshold t can be equal
everywhere (for instance: (a + b) / 2, arbitrary value, mean value, median value, etc.) or
it can be location dependent defined locally or globally. Figure 2 demonstrates constant
threshold dithering, where threshold t is the same for each pixel.

sample image threshold values result image

Figure 2. Constant threshold dithering.

Constant threshold dithering produces very bad results, since practically the intermediate
tones are substituted by the nearest available colors. Better results can be achieved using
location dependent dithering, where for a uniform area the same pattern is repeated. For
example, using a 2 × 2 pattern the following five different gray tones can be simulated:

Using this patterns, the domain of the possible gray levels is divided into five intervals,
where the interval borders are defined as follows:

4.5 4.5 4.5 4.5

4.5 4.5 4.5 4.5

4.5 4.5 4.5 4.5

4.5 4.5 4.5 4.5

0

0

9 9 9

0 9 9
0 9

0 0 0

0 0

0

1

1 5

1

1 6 5

4 1

7 6 5

4

3

2

4

3

0 1/4 1/2 3/4 1

1/8 3/8 5/8 7/8

According to these threshold values it is decided which pattern to use in a certain area.
For instance, in a region where the gray levels are between 1/8 and 3/8 the second pattern
is repeated which represents the gray value of 1/4. This technique can be implemented
using a threshold matrix which contains a regular pattern of the upper interval borders
defining a threshold for each pixel location (Figure 3).

. ..

1/8

3/8

5/8

7/8

1/8

3/8

5/8

7/8

1/8 5/8

7/8

1/8 5/8 1/8

. . .

Figure 3. The threshold matrix.

In general case the distances between interval borders are normally equal, therefore it
suffices to define the sequence of the pixel values in a dither matrix:

instead of

1/8 5/8

7/8 3/8 only

0

1

2

3

For instance, having an n × n matrix the values are in [0, n2 – 1], and value k corresponds
to the threshold value (2k + 1)/(2n2). Figure 4 shows an example of a dither matrix and a
corresponding threshold matrix. Figure 5 demonstrates the location dependent dithering
using a 2 × 2 dither matrix.

a b
Figure 4. An example of a dither matrix and a corresponding threshold matrix

7

8

6

3

5

4

2

0

1

15
18

5
18

7
18

1
18

9
18

17
18

11
18

13
18

3
18

4

sample image threshold values result image

Figure 5. Threshold dithering.

In order to generate larger threshold matrices a recursive method can be used shown in
Figure 6. Another opportunity is to use “magic squares” which produces less diagonal
stripes (Figure 7).

Figure 6. Recursive generation of threshold matrices.

Figure 7. “Magic squares”.

k=
0(1)n2-1

4k+0 4k+2

4k+3 4k+1

0 2
3 1 . . .

 0 8 2 10
12 4 14 6
 3 11 1 9
15 7 13 5

1.1 5.6 1.1 5.6

7.9 3.4 7.9 3.4

0

9

9 9 0

0 9 0
0 0

0 0 0
9 0

9

1

1 5

1

1 6 5

4 1

7 6 5

4

3

2

4 1.1 5.6 1.1 5.6

7.9 3.4 7.9 3.4

 0 14 3 13
11 5 8 6
12 2 15 1
 7 9 4 10

5

1.3. Gray level dithering

Assume that, there are several gray levels available. Between neighboring levels a and b
a threshold corresponding to a dither matrix value k is calculated as a + (b - a)(2k +
1)/(2n2). This calculation is done separately for each pixel and not once for a dither
matrix, since it depends on the interval which contains the given pixel value. Figure 8
shows an example for gray level dithering using 4 available gray values (0, 3, 6, 9).

sample image threshold values result image

Figure 8. Gray level dithering example.

1.4. Dot diffusion dithering

Dot diffusion dithering simulates the traditional printing techniques for high resolution
devices. This is demonstrated in Figure 9, where ordering of the threshold values
generates larger dot areas.

Figure 9. Dot diffusion dithering.

1

1 5
5

4 1

6 5

4
3

2

4

1

1 6

7 0.4 7.9

2.6 3.4

3.4 4.9

5.6 4.1

0.4 4.9

2.6 4.1

3.4 1.9

2.6 1.1 0

3 6
3

3 0

6 6

3
3

0

6

3

0 6

6

0 1
2

3
4 5

67

8

910

11 12
13

14
15

16
17

6

1.5. Stochastic dithering

Stochastic dithering methods use random numbers as threshold values. This technique
has two advantages. The expectation value of the total error is zero and no regular
artificial patterns appear. On the other hand, due to the bad distribution of the random
numbers the results can be rather weak. One opportunity of improvement is to use a high
resolution threshold matrix, where the threshold values are inserted one-by-one and
always that position is used which is farthest away from all the other points. In order to
determine the new location a force field function is used, therefore this method is called
forced random matrix dithering.

1.6. Error diffusion dithering

Error diffusion dithering is represented by Floyd-Steinberg dithering, where the rounding
error of every pixel is propagated to neighbor pixels and compensated there. There are
variations of this technique according to that, which neighbor pixels are effected. Let’s
denote the correct values of a pixel line with k1, k2, k3 … , and the rounded values with r1,
r2, r3 … . The rounding error e1 of the first pixel is e1 = r1– k1 and in error ei of each
further pixel the error of the previous pixel is compensated, therefore ei = ri – (ki – ei-1).

Figure 10. Error diffusion dithering.

Figure 10 demonstrates error diffusion dithering, where the available values are 0, 3, 6,
and 9. In order to get better results the error can be distributed to several neighbors using
normalized weighting. Figure 11 shows different weighted error distributions, and Figure
12 illustrates the dithering process using the first error weighting function.

k: 1 1 1 2 3 4 7 1 5 ...
r: 0 3 0 3 3 3 6 3 3 ...
f: -1 1 0 1 1 0 -1 1 -1 ...

ri := round (ki - fi-1) fi := ri - ki + fi-1

7

Figure 11. Different error distributions.

sample image threshold values result image

Figure 12. Error diffusion dithering.

x 1
16

x 7
3 5 1

x 1
48

x
7 5

3 5 7 5 3
1 3 5 3 1

x 1
42

x
8 4

2 4 8 4 2
1 2 4 2 1

 1
 2

x x 1
1

1

1 5

1

1 6 5

4 1

7 6 5

4

3

2

4

0-1 91.5 6.75 61.37

31.5 61.5 3-.87 3-.75

0-.25 3-1.37 6.87 3.06

0-1.12 6.75 0 31.47-1.12

8

2. Raster conversion

This chapter describes how to convert primitives like lines, circles etc. into pixels on a
raster display. The most important requirement from these operations are efficiency and
the support of hardware implementation.

2.1. Line conversion

In raster conversion of lines the following aspects have to be taken into account. The
lines should appear straight even if they are short. They should also appear uniformly
bright and the lightness should not depend on the direction. At last but not least, the
endpoints should be exact. In order to fulfill these requirements the following digital
differential analyzer (DDA) algorithm can be used:

#define ROUND(a) ((int)(a + 0.5))

void lineDDA (int xa, int ya, int xb, int yb)
 {
 int dx = xb – xa, dy = yb – ya, steps, k;
 float xIncrement, yIncrement, x = xa, y = ya;

 if(abs(dx) > abs(dy)) steps = abs(dx);
 else steps = abs(dy);

 xIncrement = dx / (float)steps;
 yIncrement = dy / (float)steps;

 setPixel(ROUND(x), ROUND(y));
 for(k = 0; k <steps; k++) {
 x += xIncrement;
 y += yIncrement;
 setPixel(ROUND(x), ROUND(y));
 }
 }

The main drawback of this simple DDA algorithm is the usage of real division, therefore
it is not very efficient. The Bresenham’s line drawing algorithm produces the same result
using only integer operations like addition, subtraction and shift.

9

P S

T
D } dy

yD-yS > yT-yD ⇒ T
yD-yS < yT-yD ⇒ S

H

Figure 13. Raster conversion of a line.

This method is demonstrated in Figure 13. If (yd – ys) > (yt – yd) then pixel T is the next
point of the line, otherwise pixel S is drawn as the next point. If (yd – yh) < 0 (this is
equivalent with (yd – ys) < (yt – yd)) then ys and yt do not change in the next step,
otherwise ys = ys + 1 and yt = yt + 1. Here variable d = yd – yh plays the role of a
decision variable. In every step yd is incremented with dy = (y2 –y1) / (x2 – x1), thus yd =
yd + dy. This algorithm works for a special case, where the steepness of the line is less
than 45°. The general solution can be derived from this special case by mirroring and
rotating with 90°, 180°, … angles. Using real division this algorithm could be
implemented in the following way:

void BresenhamLine1(int x1, int y1, int x2, int y2)
 {
 int ys = y1;
 float d = - 0.5; // d = yD - yH
 float dy = (y2 – y1) / (x2 – x1);
 for(int xs = x1; xs <= x2; xs ++) {
 setPixel(xs, ys);
 d = d + dy;
 if(d > 0) {
 ys = ys + 1;
 d = d – 1; // because yH = yH + 1;
 }
 }
 }

Because of the floating point operations this implementation is not very efficient.
Fortunately, introducing additional variables the real division can be avoided and the
algorithm can be implemented using only integer operations, like addition, subtraction
and shift:

10

void BresenhamLine2(int x1, int y1, int x2, int y2)
 {
 int ys = y1;
 int e = -((x2 – x1) >> 1); // d * (x2 – x1)
 int de = (y2 – y1) // dy * (x2 – x1)
 for(int xs = x1; xs <= x2; xs ++) {
 setPixel(xs, ys);
 e = e + de;
 if(e > 0) {
 ys = ys + 1;
 e = e – (x2 – x1);
 }
 }
 }

2.2. Circle conversion

The raster conversion of circles can also be done using Bresenham’s circle drawing
algorithm. In this case, the symmetry can be exploited, therefore only one eighth of the
circle arc has to be calculated (Figure 14).

Figure 14. Exploiting symmetry in raster conversion of a circle.

The Brasenham’s circle drawing algorithm uses a similar criterion as the line drawing
method (Figure 15). If (yd – ys) > (yt – yd) then pixel T is the next point of the circle,
otherwise pixel S is drawn as the next point. If (yd – ys) > (yt – yd) then point H is inside
the circle. It means that xH

2 + yH
2 < r2 or using the implicit equation of the circle:

f(xH,yH)= xH
2 + yH

2 - r2 < 0.

11

H

P

S

T
D

Figure 15. Raster conversion of a circle.

The new value dnew of the decision variable is calculated from the old value dold = d =
f(xp + 1, yp – 1/2) as follows. If dold < 0 then Hnew = Hold + (1,0), and dnew = f(xp+2, yp–
1/2) = (xp+2)2 + (yp–1/2)2 – r2 ⇒ dnew = dold + (2xp+3). If dold > 0 then Hnew = Hold +
(1,–1), and dnew = f(xp+2, yp–3/2) = (xp+2)2 + (yp–3/2)2 – r2 ⇒ dnew = dold + (2xp – 2yp + 5)
. This algorithm can be implemented the following way:

void BresenhamCircle(int r)
 {
 int x = 0, y = r; float d = 1.25 - r;
 do {
 Draw8(x, y);
 if(d < 0) d = d + 2 * x + 3;
 else {
 d = d + 2 * (x – y) + 5;
 y = y – 1;
 }
 x = x + 1;
 } while(y < x);
 }

The initialization of the decision variable is d = 1.25 – r since H = (1, r – 0.5) ⇒ d =
f(H) = 1 + (r2 – r + 0.25) – r2 = 1.25 – r.

2.3. Raster transformations

This section describes how to apply geometrical transformations to raster images. There
are four major raster transformations: translation, scaling, shearing, and rotation. The
translation is trivial, therefore no further discussion is necessary. Raster scaling requires
resampling of the original image. Figure 16 and Figure 17 demonstrate upscaling and
downscaling respectively, where the purple grid represents the old resolution, while the
black grid represents the new resolution. In both cases the center point of a pixel in a new
resolution defines its color.

12

Figure 16. Scaling up a raster image.

Figure 17. Scaling down a raster image.

A shearing transformation can be defined by a 2 × 2 transformation matrix. Figure 18
shows x-shearing and y-shearing with the corresponding matrix operations.

Figure 18. Shearing with matrix transformations.

1

α

1
β

(x y) ⋅ = (x y+βx)1 β
0 1

(x y) ⋅ = (x+αy y)1 0
α 1

x-shearing

y-shearing

13

Raster shearing can be performed as multiple application of line raster conversion (e.g.
Bresenham) as it is demonstrated in Figure 19. Note that, there is no information loss
during this operation.

Figure 19. Raster shearing.

Raster rotation can be done subdividing the rotation transformation into three shear
operations (Figure 20). Using this approach no resampling is necessary for rotation,
therefore it is computationally efficient.

–tan (θ/2) = 0.4142
sin θ = 0.7071

14

Figure 20. Raster rotation using three shears.

cos θ sin θ 1 0 1 β 1 0
-sin θ cos θ α 1 0 1 α 1

= ..

where α = - tan (θ/2)
a nd β = sin θ

–tan (θ/2) = 0.414
sin θ = 0.7071

