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1 Parametric Representations

A parametric curve in IE3 is given by

c : c(t) =

0
@ x(t)

y(t)

z(t)

1
A ; t 2 I = [a; b] � IR

where x(t); y(t) and z(t) are di�erentiable functions in t. The vector _c(t) is called tangent vector. A

curve point c(t0); t0 2 I is called regular if _c(t0) 6= o. A parametrization is called regular, if _c(t) 6= o

for all t 2 I . Any di�erentable change of the parameter � = �(t) does not change the curve. Moreover,

if _� 6= 0 in I then d(t) = c(�(t) ist also a regular parametrization. A curve which admits a regular

parametrization ist called regular.

A parametric surface is given by

s : s(u; v) =

0
@ x(u; v)

y(u; v)

z(u; v)

1
A ; (u; v) 2 [a; b]� [c; d] = I � J � IR2

where x(u; v); y(u; v) and z(u; v) are di�erentiable functions of the

parameters u and v.

The lines s(u; v0) with v0 2 J �xed and s(u0; v) with u0 2 I �xed

are called isoparametric lines of the surface. The tangent plane of

a surface point is de�ned by the two tangent vectors su and sv,

the surface normal vector at this point is n = su � sv. A surface

point is called regular if n 6= 0.

For a good introduction to di�erential geometry see e.g.

[Aumann, Spitzmueller '93]. A detailed discussion of the follow-

ing topics can be found in the literature listed at the end of this

summary. Almost all pictures are generated with the help of a col-

lection of CAGD-Java applets written by the Geometric Design

Group at the University of Karlsruhe:

http : ==i33www:ira:uka:de=applets=mocca=html=noplugin=inhalt:html
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Figure 1: Surface with Isolines
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2 B�ezier Curves

2.1 The Constructive Approach: The de Casteljau Algorithm

First described by de Casteljau it is probably the most fundamental algorithm in the �eld of curve and

surface design, not least because it is so easy to understand. \ Its main attraction is the beautiful

interplay between geometry and algebra: a very intuitive geometric construction leads to a powerful

theory" [Farin '90].

The Algorithm

Given n+ 1 points b0; :::; bn 2 IE3 and an arbitrary t 2 IR.

Then

b
r
i := (1� t)br�1i + tbr�1i+1 ; i = r; :::; n (2.1)

and b0i := bi, de�nes the point b
n
0 with parameter value t on the so called B�ezier curve bn. The points

bi are called B�ezier points.

Equation (2.1) describes a repeated linear interpolation whose intermediate coeÆcients can be written

into the triangular de Casteljau scheme:

b00
b10

b01 b20
b11 b30

b02 b21
b12

b03

2.2 The Analytical Approach: B�ezier Curves and Bernstein Polynomials

The de Casteljau algorithm gives a recursive de�nition of B�ezier curves in terms of an algorithm. For

further theoretical development it is also necessary to have an explicit parametric representation for them.

Based on the de Casteljau recursion it can be shown by mathematical induction, that a B�ezier curve b(t)

with respect to the B�ezier points bi; i = 0; :::; n is given by

b(t) =

nX
i=0

biB
n
i (t)

where Bn
i (t) =

�
n

i

�
(1�t)n�iti. are the Bernstein Polynomials of n-th degree with the following important

properties
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� partition of unity:
Pn

i=0 B
n
i (t) � 1

� positivity: Bn
i (t) > 0

� recursion: Bn
i (t) = (1� t)Bn�1

i (t) + tBn�1
i+1 (t)

2.3 Some Properties of B�ezier Curves

� AÆne invariance: An aÆne transformation of the B�ezier points is equivalent to an aÆne transfor-

mation of the whole curve.

� Convex hull property: A B�ezier curve lies inside the convex hull of its B�ezier points.

� Endpoint interpolation: The �rst and last B�ezier points lie on the curve.

� Linear precision: If all B�ezier points lie on a straight line, the corresponding B�ezier curve is identical

to this line.

� Variation diminishing property: A B�ezier curve has no more intersections with a plane than its

B�ezier polygon

Disadvantages of B�ezier curves:

� Pseudo local control: changing one of the control points changes the shape of the whole curve,

although, if for instance bi is changed, it is mostly a�ected around the point corresponding to the

parameter value i=n, if n denotes the algebraic degree of the parametrization.

� The degree of a B�ezier curve depends directly on the number of control points. Thus, higher

exibility through more control points is equivalent to a higher degree of the curve, which means

higher computational cost and less control on the behaviour of the curve.

2.4 Derivatives

It can be easily shown, that

� the lines b0b1 and bn�1bn are the tangent lines at the curve points b0 and bn.

� the intermediate points bn�10 and bn�11 of the de Casteljau algorithm detremine the tangent line at

the position bn0 (t).

2.5 Important Algorithms

� Degree elevation: Adding new control points to increase exibility without changing the shape

of the curve.
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Figure 2: A curve of degree 3 displayed as curve of degree 5

� Subdivision: Subdivision of a B�ezier curve increases its exibility without increasing its degree

and repeated subdivision converges very fast towards the curve.

The subdivision algorithm is a byproduct of the de Casteljau algorithm: The two new generated

sides of the triangle contain the B�ezier points of the two parts of the subdivided curve.

b00
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b11
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b30

b02
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�

�
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�
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�

�
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For a detailed description of the algorithms see e.g. [Hoschek, Lasser '92].

2.6 Algorithms to Evaluate B�ezier Curves

The de Casteljau algorithm is numerical stable, but not eÆcient.

Following the same idea like the Horner scheme, a B�ezier curve can be written in the nested form

b(t) = (:::((

�
n

0

�
sb0 +

�
n

1

�
tb1)s+

�
n

2

�
t2b2)s+ :::::)s+

�
n

n

�
tnbn

with s := 1� t, which leads to a more eÆcient algorithm.

Like mentioned above, repeated subdivision gives a good approximation for the curve.
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3 Splines

The use of B-Splines to de�ne curves and surface for CAGD was �rst proposed by Gordon and Riesenfeld

in the early 70�s, but its theory goes back to the early 19�th century. B-Splines are a very common tool

in CAD-Systems for the design of curves and surfaces and have two advantages over B�ezier techniques:

1. The degree of a B-spline polynomial can be set independently of the number of control points (with

certain limitations).

2. B-splines allow local control over the shape of a spline curve or surface.

3.1 B-Spline Curves

Given a set of n+ 1 control points (de Boor points) di; i = 0; :::; n and a knot vector U = (u0; ::::; un+k).

The corresponding B-spline curve s(u) is a piecewise polynomial curve of order k (of degree k � 1) with

1 � k � n+ 1 of the form

s(u) =

nX
i=0

diN
k
i (u)

The Nk
i (u) are the normalized B-spline basis functions of order k with respect to U with the following

recursive de�nition:

N0
i (u) =

(
1 u 2 [ui; ui+1)

0 sonst
(3.2)

Nr
i (u) =

u� ui
ui+r�1 � ui

Nr�1
i (u) +

ui+r � u

ui+r � ui+1
Nr�1
i+1 (u); r = 1; :::; k (3.3)

Properties of the basis functions:

� partition of unity:
Pn

i=0N
k
i (u) � 1

� positivity: Nk
i (u) > 0

� local support Nk
i (u) = 0 if u 62 [ui; ui+k)

Figure 3: A B-spline curve with all related information
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3.2 Some Properties of B-Spline Curves

� AÆne invariance

� Strong convex hull property: The curve segment corresponding to the parameter values [ui; ui+1)

lies inside the convex hull of the control points di�k; :::;di.

� Variation diminishing property.

� Local support: Moving di changes s(u) only in the parameter interval [ui; ui+k).

� Multiple knot points ui = ::: = ui+s are possible. If s � k the curve goes through the control point

di. Furthermore if n = k � 1 and U = (u0; :::; u0; u1; :::; u1) then s(u) is a B�ezier curve.

� Di�erentiability: s(u) is k � l � 1 times di�erentiable at a knot ui, if ui is of multiplicity l � 1.

3.3 Some Special Types of B-Spline Curves

The form of the knot vector determines three special cases of B-spline curves:

1. open: u0 = ::: = uk�1 and un+1 = ::: = un+k

2. closed: dn+1 := d0;dn+2 := d1; :::

3. uniform: If the spacing between knot values is constant, the resulting curve is called a uniform B-

spline curve. Uniform B-spline curves have periodic basis functions and therefore many algorithms

have a simpler and more e�ective implementation.

Figure 4: An open and a closed B-spline curve

3.4 Evaluating B-Spline Curves

The de Boor algorithm

The de Boor algorithm is a generalized de Casteljau algorithm and works following the same principles

of linear interpolation. To evaluate s(u) at u = x0, x0 2 [ul; ul+1) the following recusion has to be done:

dri := (1� �ri )d
r�1
i�1 + �rid

r�1
i ; i = l � k + 1; :::; l; r = 0; :::; k � 1

with

�ri :=
x0 � ui

ui+k�r � ui

where d0i := di and s(x0) = dk�1l .
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The de Boor scheme has the same form like the de Casteljau scheme.

The de Boor algorithm allows the evaluation of the curve, without any knowledge of the basis functions

and proposes an e�ective methode.

The direct evaluation

A second possibility to evaluate a B-Spline function for s parameter value x is given by the following

algorithm.

1. Find the knot span [ui; ui+1) in which x lies.

2. Compute the non zero basis functions.

3. multiply the values of the nonzero basis functions with the corresponding control points.

3.5 Algorithms

� Knot insertion and knot re�nement:

The knot insertion algorithm inserts a knot one or multiple times into the knot vector. Knot

insertion does not change the shape of the curve, but re�nes its segmentation. This algorithm is

used to increase the exibility of a curve, to compute derivatives, to split curves and to evaluate a

curve for a certain parameter value: The de Boor algorithm is a repeated knot insertion algorithm

that inserts this parameter value k + 1 times into the knot vector. There exist special algorithms

that insert several di�erent knots simultaneously (knot re�nement).

Figure 5: An example for knot re�nement

� Degree elevation:

Adapts curve degrees whithout changing the shape to build combined structures, like tensor product

surfaces or to connect curves and surfaces.

For a detailed description of the algorithms see e.g. [Piegl, Tiller '95].

4 Rational Curves

Although polynomials o�er a lot of advantages, there exist a number of important curve and surface types

which cannot be represented precisely using polynomials, e.g. conic sections and quadrics that have a
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rational parametrization.

In general a rational parametrized curve has the form:

c(u) =

0
B@

x(u)
w(u)
y(u)
w(u)
z(u)
w(u)

1
CA

A more elegant and very useful representation is the one using homogeneous coordinates: the curve c is

represented as a polynomial curve in IE4.

c(u) =

0
BB@

w(u)

x(u)

y(u)

z(u)

1
CCA

The original curve has to be interpreted as a projection of this curve onto the hyperplane w(u) = 1 of

IE4.

A homogeneous represenation p = (w; x; y; z)T of a point can be converted back to the euclidean repre-

sentation in the following way: p = (x=w; y=w; z=w)T .

4.1 Rational B�ezier Curves

A rational B�ezier curve is de�ned as

b(u) =

Pn

i=0 wibiB
n
i (u)Pn

i=0 wiBn
i (u)

The wi; i = 0; :::; n are called weights and are assumed to be positive. If all wi = 1, b(u) denotes a

polynomial B�ezier curve.

Writing b(u) in terms of homogeneous coordinates yields the following represenation:

b(u) =

nX
i=0

biB
n
i (u)

with the homogeneous B�ezier points bi = (wi; wib
T
i )

T .

Properties

Rational B�ezier curves have the same properties as non-rational ones, but they

� are even projective invariant

� do not lie inside the control polygon if negative weights are allowed and

� have the weights as additional design parameter: increasing the weight wi causes an attraction of

the curve towards the B�ezier point bi.

Algorithms

All algorithms for polynomial B�ezier curves can be applied in the same way onto the homogeneous

representation of a rational B�ezier curve.
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4.2 Non Uniform Rational B-Spline Curves (NURBS)

NURBS are the most important and exible design elements provided in CAD systems. Polynomial and

rational B�ezier curves and B-spline curves are subsets of NURBS. A NURBS with respect to the control

points d0; :::;dn and the knot vector U = (u0; :::; un+k) is de�ned as

n(u) =

Pn

i=0 widiN
k
i (u)Pn

i=0 wiNk
i (u)

The wi; i = 0; :::; n are called weights and are assumed to be positive. If all wi = 1, b(u) denotes a

polynomial B-Spline curve.

Writing n(u) in terms of homogeneous coordinates yields the following represenation:

n(u) =

nX
i=0

diN
k
i (u)

with the homogeneous control points di = (wi; win
T
i )

T .

Properties

NURBS have the same properties as polynomial B-spline curves, but they

� are even projective invariant

� do not lie inside the control polygon if negative weights are allowed and

� have the weights as additional design parameter: changing the weight wi a�ects only the interval

[ui; ui+k)

Algorithms

All algorithms for polynomial B�ezier curves can be applied without any change to the homogeneous

representation of a NURBS curve.

5 Surfaces

5.1 Tensorproduct Surfaces

\A surface is the locus of a curve that is moving through space and thereby changing its shape"

Let

f(u) =

nX
i=0

ciFi(u)

be a curve in IE3 with Fi(u); i = 0; :::; n as Basis Functions (e.g. Bernstein polynomials or B-spline basis

functions). Moving f through space while deforming it, is equivalent to continuously changing the control

points ci which can be described by

ci(v) =
mX
j=0

aijGj(v)
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where the Gj(v); j = 0; :::;m are Basis Functions too.

Combining both equations yields the de�nition of a tensor product surface:

s(u; v) =

nX
i=0

mX
j=0

aijFi(u)Gj(v):

B�ezier Surfaces

A tensorproduct B�ezier surface is given by

b(u; v) =

mX
i=0

nX
j=0

bijB
m
i (u)Bn

j (v):

The B�ezier points bij form the control net of the surface.

Tensorproduct B�ezier surfaces have properties analogue to that of B�ezier curves.

Figure 6: A B�ezier tensor product surface

All algorithms for B�ezier curves can be applied in two steps to the surface b(u; v):

1. Apply algorithm on the curves bi(v) =
Pn

j=0 bijB
n
j (v).

2. Apply algorithm on the curves b(u; v) =
Pm

i=0 bi(v)B
m
i (u).

B-Spline Surfaces

A tensorproduct B-spline surface with respect to the control points dij and the knot vector U =

(u0; :::; um+k) and V = (v0; :::; vn+l) is given by

s(u; v) =

mX
i=0

nX
j=0

dijN
k
i (u)B

l
j(v):

Tensorproduct B-spline surfaces have properties analogue to that of B�ezier curves.
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All algorithms for B-spline curves can be applied in in the same two steps to the surface s(u; v) like the

algorithms for B�ezier curves on tensorproduct B�ezier surfaces.

5.2 B�ezier Triangles

A triangular B�ezier patch is de�ned by

bmx(u; v) =
X

i+j+k=n

bi;j;kB
n
i;j;k(u; v; w)

where i; j; k � 0 and u; v; w are baryzentric coordinates of the triangular parameter domain. The Bn
i;j;k

are generalized Bernstein polynomials of degree n

Bn
i;j;k(u; v; w) =

n!

i!j!k!
uivjwk

. The B�ezier net of the surfaces is formed by the 1
2 (n+ 1)(n+ 2) B�ezier points bi;j;k.

The properties of that the triangular B�ezier patch inherits are the same as described for the univariat

case.

Figure 7: An elliptic paraboloid as B�ezier triangle

5.2.1 Algorithms (see [Hoschek, Lasser '92])

� The de Casteljau algorithm for triangular patches produces a tetrahedral scheme. The recursion

formula for the computation is:

blijk = ubl�1i�1jk + vbl�1ij�1k + wbl�1ijk�1

where i+ j + k = n� l; (i; j; k � 0) and b0ijk = bijk . It is easy to show that x(u; v; w) = bn000.

� Degree elevation
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� Subdivision: the subdivision of the patch into three subpatches can be derived from the de Calstjau

algorithm, like in the univariat case.
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