Advanced Modeling

Eduard Gröller, Thomas Theußl, Peter Rautek

Institute of Computer Graphics and Algorithms

Vienna University of Technology
Motivation

- Real world phenomena
 - Complex geometry
 - Large deformations
 - Topological changes
 - Fuzzy objects
- Tedious or impossible to model with meshes
- Examples
 - Smoke, fire
 - Fluids
 - Fur, hair, grass

[http://physbam.stanford.edu/~fedkiw/]
Motivation

[http://physbam.stanford.edu/~fedkiw/]
Motivation

[http://physbam.stanford.edu/~fedkiw/]
Overview

- Particle systems
- Implicit modeling
 - Soft objects
 - Superquadrics
 - Level sets
- Procedural modeling
 - Sweeps
 - Cellular texture generation
 - Terrain simulation
 - Vegetation simulation
- Structure-deforming transformations
Particle Systems

- Modeling of objects changing over time
 - Flowing
 - Billowing
 - Spattering
 - Expanding
- Modeling of natural phenomena:
 - Rain, snow, clouds
 - Explosions, fireworks, smoke, fire
 - Sprays, waterfalls, lumps of grass

[Matthias Müller]
1982 Star Trek II: The Wrath of Khan

“A particle system is a collection of many many minute particles that together represent a fuzzy object. Over a period of time, particles are generated into a system, move and change from within the system, and die from the system.”

William T. Reeves
Particle Systems - A Technique for Modeling a Class of Fuzzy Objects
ACM Transactions on Graphics, 1983
Particle Systems

- Certain number of particles is rendered
- Particle parameters change over time:
 - Location
 - Speed
 - Appearance
- Particles die (lifetime) and are deleted
Particle Systems (2)

- Particle shapes may be spheres, boxes, or arbitrary models
- Size and shape may vary over time
- Motion may be controlled by external forces, e.g. gravity
Particle Systems (3)

- Particles interfere with other particles
Particle Systems: Bomb

Figure 10-111
Modeling fireworks as a particle system with particles traveling radially outward from the center of the sphere.
lifetime can be encoded by color: from green to yellow
Implicit Modeling

- No fixed shape and topology
- Modeling of
 - Molecular structures
 - Water droplets
 - Melting objects
 - Muscle shapes
- Shape and topology change
 - In motion
 - In proximity to other objects

Eduard Gröller, Thomas Theußl, Peter Rautek
Implicit Modeling

- No seams
- Oriented surface (well defined inside and outside)
- Differentiable
- Closed
- Continuous
Implicit Modeling

- Implicit equation e.g., \(f(x, y) = -(x^2 + y^2) = T \)
- Vs. explicit equation e.g., \(y = kx + d \)
- Function \(\mathbb{R}^n \to \mathbb{R} \)
- Right side constant (typically a threshold \(T \))

The surface of an implicit model is defined as the set of points that fulfill the implicit equation.
Implicit Modeling

- **Level sets**
 - $\mathbb{R}^2 \rightarrow \mathbb{R}$ level curve, iso contour, contour line
 - $\mathbb{R}^3 \rightarrow \mathbb{R}$ level surface, iso surface
 - $\mathbb{R}^n \rightarrow \mathbb{R}$ level hypersurface

- **Changing the threshold**

\[\mathbb{R} \rightarrow \mathbb{R}^2 \rightarrow \mathbb{R}^3 \rightarrow \mathbb{R}^n \]

change of topology
Soft Objects: Blobs

- Volume stays constant during movement

- Molecular bonding: As two molecules move away from each other, the surface shapes
 - Stretch
 - Snap and finally
 - Contract into spheres
Definition of Blobby Objects

Sum of Gaussian density functions centered at the \(k \) control points \(X_k = (x_k, y_k, z_k) \)

\[
f(x, y, z) = \sum_{k} b_k e^{-a_k r_k^2} - T = 0
\]

where

\[
r_k^2 = (x - x_k)^2 + (y - y_k)^2 + (z - z_k)^2
\]

\(T \) is a specified threshold, and \(a_k \) and \(b_k \) adjust the blobbiness of control point \(k \)
Definition of Blobby Objects

- Metaball model uses density functions, which drop off to 0 at a finite interval
- Soft object model uses same approach with a different density-distribution characteristic
Superquadrics

- Generalization of quadric representation
- Additional parameters
- Increased flexibility for adjusting object shapes
- One additional parameter for curves and two parameters for surfaces
Superellipse

- Exponent of x and y terms of a standard ellipse are allowed to be variable:

$$\left(\frac{x}{r_x} \right)^{2/s} + \left(\frac{y}{r_y} \right)^{2/s} = 1$$

- Influence of s:
Superellipsoid

- Exponent of \(x, y\) and \(z\) terms of a standard ellipsoid are allowed to be variable:

\[
\left[\left(\frac{x}{r_x} \right)^{2/s_2} + \left(\frac{y}{r_y} \right)^{2/s_2} \right]^{s_2/s_1} + \left(\frac{z}{r_z} \right)^{2/s_1} = 1
\]

- Influence of \(s_1\) and \(s_2\):
Procedural Modeling

- High geometric complexity
- Complex model does not exist as geometry
 - Set of production rules
Motivation

- One window in highest resolution ~7 million triangles
- Modeled with 126 KB (18 KB zipped) of code
- Changing parameters yields very different models
Sweeps

- Modeling of objects with symmetries:
 - Translational
 - Rotational

- Represented by
 - 2D shape
 - Sweep-path
Translational Sweeps

- Control points of spline curve $P(u)$
- Generates the solid, whose surface is described by point function $P(u,v)$

Eduard Gröller, Thomas Theußl, Peter Rautek
Rotational Sweeps

- Spline curve $P(u)$
- Rotated about given rotation axis
- Sampled at given angles yields the surface $P(u,v)$
General Sweeps

- Spline curve $P(u)$
- Moved along a sweep path (e.g., spline)
- Animated sweep path

[Kinetix 3D Studio MAX]
Sweeps - Pros and Cons

- Advantages:
 - Generates shapes that are hard to do otherwise

- Disadvantages:
 - Hard to render
 - Difficult modeling
Cellular Texture Generation

- A cellular particle system, that changes geometry of surface
 - cell state
 - cell programs
 - extracellular environments
Cellular Texture Generation

- **Cell state:** position, orientation, shape, chemical concentrations (reaction-diffusion)

- **Cell programs:**
 - Go to surface, die if too far from surface, align, adhere to other cells, divide until surface is covered, ...
 - Differential equations

- **Extra cellular environment:** neighbor orientation, concentration, ...

Eduard Gröller, Thomas Theußl, Peter Rautek
Cellular Texture Generation 2

- Levels of Detail (LOD): Use fewer polygons for further distances
Cell: group of polygons with texture and transparency maps
Cellular Texture Generation - Examples

- Handling of unusual topologies
- No problem with parameterization
Cellular Texture Generation - Examples

- Reaction-diffusion determine pattern of bumps and thorns
Cells (fur) oriented like their neighbors
Cells (fur) similarly oriented
Knitwear: simulation of thin 3D structure with instanced volume elements

- basic element (R-loop)
- basic element (L-loop)
Visualization of Knitwear

- Volume element: 2D cross-section swept + rotated along parametric curve

Eduard Gröller, Thomas Theußl, Peter Rautek
Visualization of Knitwear

- Rendering with raycasting
 - Surface tiled with volumetric elements
 - Curved rays
Knitwear - Examples
Knitwear - Examples
Knitwear - Examples
Knitwear - Examples
Terrain Simulation

- Fractals
- Geographical Data
- Simulations
- Hybrids
Terrain Simulation
Terrain Simulation
Terrain Simulation
Realistic modeling and rendering of plant
Terrain

Height map

Hills through noise synthesis

Stream through masking

Water concentration (blue=high, yellow=low)
Specification of Plant Populations

- **Space-occupancy**
 - Explicit specification (counting plants, painting)
 - Procedural generation (cellular automata, reaction-diffusion)

- **Individual based**
 - Explicit specification (survey, interactive specification)
 - Procedural generation (point pattern generation model)

Self-thinning:
- Green: not dominated
- Red: dominated
- Yellow: old

Distribution of eight species
Realistic Modeling and Rendering of Plants

- Complex models necessary for realistic appearance
 - Plant distribution by ecosystem simulation and/or manual setting
 - Reduce geometric complexity by approximate instancing (similar plants, groups of plants or plant organs)
 - Parametrized models of individual plants
Plant Ecosystems - Examples
Plant Ecosystems - Examples
Plant Ecosystems - Examples
Plant Ecosystems - Examples
Plant Ecosystems – Self Thinning
Plant Ecosystems – Self Thinning
Plant Ecosystems - Examples
Plant Ecosystems - Examples
Non-linear transformations
- Tapering: non-linear scaling
- Twist: non-linear rotation
- Bend: also non-linear rotation
Scale factor is a function:

\[
\begin{pmatrix}
 f_x(\vec{x}) & 0 & 0 \\
 0 & f_y(\vec{x}) & 0 \\
 0 & 0 & f_z(\vec{x})
\end{pmatrix}
\cdot \vec{x}
\]
Angle of rotation is a function e.g., for rotation about z-axis

\[
\tilde{x}' = \begin{pmatrix}
\cos f(\tilde{x}) & -\sin f(\tilde{x}) & 0 \\
\sin f(\tilde{x}) & \cos f(\tilde{x}) & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \tilde{x}
\]
Also non-linear rotation
Example 1
Example 2
Other Topics not Covered Here

- Shape grammars
- Procedural architecture
- Fractals (see Fraktale VO WS)
Thank you for your attention

Questions?
References

